1
|
Liu Y, Chen Z, Yin X, Chen Y, Liu Y, Yang W. Selective and efficient removal of As(V) and As(III) from water by resin-based hydrated iron oxide. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Wang XH, Wang JP. Ultrasonic-assisted extraction and enrichment of the flavonoids from Salicornia Europaea leaves using macroporous resins and response surface methodology. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Shan X, Yang L, Yang H, Song G, Xiao Z, Ha CS, Zhai S, An Q. Preparation of resin-based composites containing Ce and cationic polymers with abundant promotional affinity sites for phosphate capture. NEW J CHEM 2022. [DOI: 10.1039/d2nj03245g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new type of composite, D301-Ce+, for efficient and selective phosphate removal.
Collapse
Affiliation(s)
- Xiangcheng Shan
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Liyu Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Huarong Yang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guilin Song
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zuoyi Xiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chang-sik Ha
- Department of Polymer Science and Engineering, Pusan National University, Republic of Korea
| | - Shangru Zhai
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Osazuwa OU, Abidin SZ. The Functionality of Ion Exchange Resins for Esterification, Transesterification and Hydrogenation Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202001381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Osarieme Uyi Osazuwa
- Faculty of Chemical and Process Engineering Technology College of Engineering Technology University Malaysia Pahang Lebuhraya Tun Razak 26300 Gambang Kuantan Pahang Malaysia
- Department of Chemical Engineering University of Benin PMB 1154 Benin City Edo State Nigeria
| | - Sumaiya Zainal Abidin
- Faculty of Chemical and Process Engineering Technology College of Engineering Technology University Malaysia Pahang Lebuhraya Tun Razak 26300 Gambang Kuantan Pahang Malaysia
- Centre of Excellence for Advanced Research in Fluid Flow (CARIFF) University Malaysia Pahang Lebuhraya Tun Razak 26300 Gambang Kuantan Pahang Malaysia
| |
Collapse
|
5
|
Han S, Zang Y, Gao Y, Yue Q, Zhang P, Kong W, Jin B, Xu X, Gao B. Co-monomer polymer anion exchange resin for removing Cr(VI) contaminants: Adsorption kinetics, mechanism and performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136002. [PMID: 31905586 DOI: 10.1016/j.scitotenv.2019.136002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Modified anion exchange resin (EDE-D301) was synthesized by mixing monomers: epichlorohydrin (ECH), dimethylamine (DMA), ethylenediamine (EDA) with the weakly alkaline anion exchange resin D301 through in-situ polymerization method. Adsorption performance of EDE-D301 for removing Cr(VI) contaminants was investigated in batch and column systems. Physicochemical properties of the anion exchange resins were characterized to determine the adsorption mechanism and regeneration ability. Characteristic results revealed that EDE-D301 showed enhanced surface area, positive charge and contents of N and Cl elements, indicating that the modifying reagents of monomers were successfully polymerized in the resin. The experimental adsorption data fitted well to the pseudo-second-order kinetic model and the Langmuir isotherm model. The fixed-bed experiments showed that the exhaustion time increased with increasing the bed depth, and decreased with increasing the flowrate and influent concentration. Adsorption capacity for Cr(VI) onto EDE-D301 was determined at a maximum level of 298 mg·g-1, and remained at 93% after four consecutive cycles. FTIR and XPS analysis indicated that the ion exchange and complexation were responsible for the Cr(VI) adsorption.
Collapse
Affiliation(s)
- Songlin Han
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yanan Zang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yue Gao
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China.
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Ping Zhang
- Shandong Urban Construction Vocational College, Jinan 250103, China
| | - Wenjia Kong
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Bo Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005,Australia
| | - Xing Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Wang H, Wang Y, Sun X, Hu H, Peng Q. Two functional post-cross-linked polystyrene resins: Effect of structure on the enhanced removal of benzene sulfonic acid. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Effect of Functional Group Density of Anion Exchange Resins on Removal of p-Toluene Sulfonic Acid from Aqueous Solution. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app10010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adsorption using anion exchange resins is an efficient method for the removal of aromatic sulfonic acids (ASAs) from industrial wastewater. In this study, a series of weak-base anion exchangers (SD1–SD5) were synthesized to investigate the effect of functional group density of resins on the adsorption of ASAs from wastewater containing competitive inorganic anions. p-Toluene sulfonic acid (PTSA) was selected as a target pollutant, and Na2SO4 was chosen as the competitive inorganic salt because of its widespread existence in industrial wastewater. Adsorption performances of these resins were evaluated and compared in terms of selectivity, kinetics, isotherms, regeneration, and dynamic adsorption behavior. Importantly, the PTSA uptake increased with the raising content of functional groups on resins in the absence of Na2SO4; however, in the presence of a high level of Na2SO4 (for example, ≥1%), a decrease in the functional group density could improve the adsorption capacity of resins for PTSA. Moreover, desorption and fixed bed column experiments were conducted in all resins, thereby confirming the effect of functional group density of resins on the PTSA adsorption in actual application. In brief, this research will provide a better understanding for the design and preparation of anion exchangers for the effective removal of ASA from wastewater.
Collapse
|
8
|
Wang XH, Wang JP. Effective extraction with deep eutectic solvents and enrichment by macroporous adsorption resin of flavonoids from Carthamus tinctorius L. J Pharm Biomed Anal 2019; 176:112804. [DOI: 10.1016/j.jpba.2019.112804] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/16/2022]
|
9
|
Sun Y, Zheng W, Yin D. Removal of 2-naphthalenesulfonic acid using novel dual functional weakly basic anion exchange resins from aqueous solution. ADSORPT SCI TECHNOL 2019. [DOI: 10.1177/0263617418824809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two novel weakly basic anion exchange resins BNH and BN2 bearing two different functional groups was fabricated via the two-step amination of chloromethylated polystyrene-divinylbenzene beads with dibutylamine and dimethylamine. The adsorption properties of BNH and BN2 for the 2-naphthalenesulfonic acid (NSA) removal from wastewater were compared with two synthesized monofunctional anion exchange resins BN0 and BN6 (derived from dimethylamine and dibutylamine, respectively). The experimental data revealed that the adsorption process on the four resins fitted well with the pseudo-second-order kinetics equation and the equilibrium isotherms were in good agreement with the Langmuir model. Thermodynamic analyses illustrated that 2-naphthalenesulfonic acid adsorption onto resins was an endothermic and spontaneous process. Importantly, BN2 still displayed relatively high adsorption capacity in the existence of Na2SO4, indicative of an excellent selectivity for 2-naphthalenesulfonic acid over sulfate than other resins. The obtained results elucidate that BN2 could have potential industrial application in effluent disposal fields because of its superior selectivity, acceptable kinetics, and desorption capability.
Collapse
Affiliation(s)
- Yue Sun
- Department of Municipal Engineering, Southeast University, China
| | - Weisheng Zheng
- Department of Municipal Engineering, Southeast University, China
| | - Deqiang Yin
- Department of Municipal Engineering, Southeast University, China
| |
Collapse
|
10
|
Kim J, Park CW, Lee KW, Lee TS. Adsorption of Ethylenediaminetetraacetic Acid on a Gel-Type Ion-Exchange Resin for Purification of Liquid Waste Containing Cs Ions. Polymers (Basel) 2019; 11:polym11020297. [PMID: 30960281 PMCID: PMC6419230 DOI: 10.3390/polym11020297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
Because of its excellent chelating property, ethylenediaminetetraacetic acid (EDTA) is used as a complex agent, not only for heavy metals, but also for radioactive isotopes during the decontamination of nuclear facilities. The removal of EDTA was investigated by adsorption with commercially available, gel-type, anion-exchange resins (AERs), which are based on cross-linked polystyrene with positive tertiary amine groups. Because of the positive charge on AERs, they could adsorb EDTA effectively even in a solution mixed with ions of cesium (Cs) via electrostatic attraction. Because EDTA adsorption by cation-exchange resins (CERs) was not possible, it was concluded that the negative charges on CERs do not contribute to the interaction with EDTA. The maximum adsorption capacity (qmax) of AER (2 g/L) for EDTA removal, calculated by the Langmuir isotherm model was 0.47 mmol/g for initial EDTA concentrations in the range of 0.01–1 mM in the EDTA/Cs mixed solution. The Langmuir isotherm model was found to be suitable for EDTA adsorption on AERs, indicative of monolayer adsorption. The results clearly suggested that the AERs could efficiently remove EDTA, regardless of the presence of nuclides, such as Cs ions in the aqueous solution.
Collapse
Affiliation(s)
- Jongho Kim
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea.
| | - Chan Woo Park
- Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea.
| | - Kune-Woo Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea.
- Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea.
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
11
|
Zang Y, Yue Q, Kan Y, Zhang L, Gao B. Research on adsorption of Cr(Ⅵ) by Poly-epichlorohydrin-dimethylamine (EPIDMA) modified weakly basic anion exchange resin D301. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:467-473. [PMID: 29909316 DOI: 10.1016/j.ecoenv.2018.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 05/06/2023]
Abstract
A novel composite, EPIDMA/D301, with high adsorption capacity and particular affinity toward Cr(Ⅵ) was well prepared utilizing cationic polyelectrolyte poly-epichlorohydrin-dimethylamine (EPIDMA) impregnated in the networking pores of the styrene macroporous weak basic anion exchange resin D301. The physicochemical characteristics of EPIDMA/D301 were characterized by the Brunauer-Emmett-Teller (BET), zeta potential, FTIR, SEM-Mapping and XPS. The adsorption properties were researched via the influence of the concentration of EPIDMA, adsorbent dose, pH, the initial concentration of Cr(Ⅵ) solution, contact time and temperature. Results presented that the weakly basic anion exchange resin supported cationic polymer showed the excellent potential of removing Cr(VI) ions primarily due to the nonspecific Cr(VI) adsorption resulted from the polymeric host D301, the electrostatic attraction of amino groups fixed on the D301 matrix and the embedded EPIDMA with Cr(VI) ions and the ion exchange by the displacement of Cl- mainly derived from EPIDMA with Cr(VI) ions. The kinetic data were best fitted by the pseudo-second-order kinetic model. The batch equilibrium data followed Langmuir isotherm model well with the maximum adsorption capacity of 194 mg g-1 at 25 °C, which demonstrated that the styrene anion exchange resin modified with EPIDMA might be an efficient approach to eliminate potentially toxic metals.
Collapse
Affiliation(s)
- Yanan Zang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Yujiao Kan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Longlong Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|