1
|
Chang JS, Kim HJ, Lee JH. Detoxification of ars genotypes by arsenite-oxidizing bacteria through arsenic biotransformation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:470. [PMID: 39382695 DOI: 10.1007/s10653-024-02251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
The detoxification process of transforming arsenite (As(III)) to arsenate (As(V)) through bacterial oxidation presents a potent approach for bioremediation of arsenic-polluted soils in abandoned mines. In this study, twelve indigenous arsenic-oxidizing bacteria (AOB) were isolated from arsenic-contaminated soils. Among these, Paenibacillus xylanexedens EBC-SK As2 (MF928871) and Ochrobactrum anthropi EBC-SK As11 (MF928880) were identified as the most effective arsenic-oxidizing isolates. Evaluations for bacterial arsenic resistance demonstrated that P. xylanexedens EBC-SK As2 (MF928871) could resist As(III) up to 40 mM, while O. anthropi EBC-SK As11 (MF928880) could resist As(III) up to 25 mM. From these bacterial strains, genotypes of arsenic resistance system (ars) were detected, encompassing ars leader genes (arsR and arsD), membrane genes (arsB and arsJ), and aox genes known to be crucial for arsenic detoxification. These ars genotypes in the isolated AOBs might play an instrumental role in arsenic-contaminated soils with potential to reduce arsenic contamination.
Collapse
Affiliation(s)
- Jin-Soo Chang
- Molecular Biogeochemistry Laboratory, Biological & Genetic Resources Institute (BGRI), Sejong, Republic of Korea.
| | - Hyun-Jung Kim
- Molecular Biogeochemistry Laboratory, Biological & Genetic Resources Institute (BGRI), Sejong, Republic of Korea
| | - Ji-Hoon Lee
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Ranjan R, Kumar N, Gautam A, Kumar Dubey A, Pandey SN, Mallick S. Chlorella sp. modulates the glutathione mediated detoxification and S-adenosylmethionine dependent methyltransferase to counter arsenic toxicity in Oryza sativa L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111418. [PMID: 33045435 DOI: 10.1016/j.ecoenv.2020.111418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The present study investigates the role of Chlorella sp. in the mitigation of arsenic (iAs) induced toxicity in Oryza sativa L. The study shows, co-culture of rice seedlings with Chlorella sp. reduced the iAs accumulation, simultaneously improving the growth of seedlings under iAs treatments. While treatment with As(III) and As(V) (60 µM) alone, inflicted toxicity in rice seedlings, manifested as significant enhancement in stress markers levels (TBRAS and H2O2), this coincided with the shifting of cellular reduced state to oxidized state (reduced GSH/GSSG ratio). Contrarily, co-culturing rice seedlings with Chlorella sp. under iAs toxicity, reduced these stress markers and recovered the GSH/GSSG ratio. The GSH dependent antioxidant enzymes i.e. GR and GPX activities also exhibited significant enhancement upon co-culturing rice seedlings with Chlorella sp. against iAs stress. Simultaneously, the expression of four thiol dependent GRX genes, i.e. GRX13950, GRX35340, GRX12190 and GRX07950 were enhanced against As(III) and As(V) (60 µM), which reduced upon co-culturing with Chlorella sp. A similar trend was also observed with the expression of GST genes, where the co-culture with Chlorella sp. significantly reduced the genes expression of two isoforms (GST 38600 and GST 38610). On the contrary, the expression of S-adenosylmethionine dependent methyltransferases (SAMT) gene in rice seedlings was enhanced upon co-culturing with the Chlorella sp. against iAs stress. Overall, the results demonstrate that the rice seedlings when co-culture with Chlorella sp. ameliorates iAs toxicity through GSH dependent detoxification pathway, evident from the enhanced expression of GRX, GST, SAMT genes and activity of GSH dependent antioxidant enzymes (GR and GPX) in the rice seedlings.
Collapse
Affiliation(s)
- Ruma Ranjan
- CSIR-National Botanical Research Institute, Lucknow, India; University of Lucknow, Lucknow, India
| | - Navin Kumar
- CSIR-National Botanical Research Institute, Lucknow, India
| | | | | | | | | |
Collapse
|
3
|
Wang Z, Gui H, Luo Z, Sarakiotia IL, Yan C, Laing GD. Arsenic release: Insights into appropriate disposal of arsenic-loaded algae precipitated from arsenic contaminated water. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121249. [PMID: 31577972 DOI: 10.1016/j.jhazmat.2019.121249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Limited information is available on arsenic (As) release from As-loaded algae precipitated from As contaminated water and its subsequently appropriate disposal. In this study, selected M. aeruginosa as algal model, changes of As concentrations and its speciation were thus investigated in the in-situ treated algae water by optimal coagulation. Meanwhile, after ex-situ disposal, As release kinetics were also examined from its precipitated algae with living and heat-treated conditions. Results showed that in the in-situ treated water, total dissolved As slowly decreased for 6 days, but arsenite increased largely after 3 days partly caused by its reduction status. While being disposed ex-situ, As release from precipitated algae depended not only on intracellular As content but also on the living or heat-treated status of algae. Additionally, potential risks arised from As release in short-term duration (24 h) from both the precipitated algae at 1.0 μM As(V) pre-exposure with the living and heat-treated conditions due to their higher release. Furthermore, As release in long-term (6 d) duration from heat-treated algae at 10.0 μM As(V) pre-exposure also resulted in potential risks. Accordingly, this study offers insights into the appropriate methods at a proper time of disposing precipitated algae with As-contamination.
Collapse
Affiliation(s)
- Zhenhong Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Chemistry and Chemical Engineering and Environment, Minnan Normal University, Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Zhangzhou 363000, China; National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, Anhui 234000, China.
| | - Herong Gui
- National Engineering Research Center of Coal Mine Water Hazard Controlling (Suzhou University), Suzhou, Anhui 234000, China
| | - Zhuanxi Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Ioannis L Sarakiotia
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, Belgium.
| |
Collapse
|
4
|
He M, Wang N, Long X, Zhang C, Ma C, Zhong Q, Wang A, Wang Y, Pervaiz A, Shan J. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. J Environ Sci (China) 2019; 75:14-39. [PMID: 30473279 DOI: 10.1016/j.jes.2018.05.023] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 05/14/2023]
Abstract
Antimony (Sb) is a toxic metalloid, and its pollution has become a global environmental problem as a result of its extensive use and corresponding Sb-mining activities. The toxicity and mobility of Sb strongly depend on its chemical speciation. In this review, we summarize the current knowledge on the biogeochemical processes (including emission, distribution, speciation, redox, metabolism and toxicity) that trigger the mobilization and transformation of Sb from pollution sources to the surrounding environment. Natural phenomena such as weathering, biological activity and volcanic activity, together with anthropogenic inputs, are responsible for the emission of Sb into the environment. Sb emitted in the environment can adsorb and undergo redox reactions on organic or inorganic environmental media, thus changing its existing form and exerting toxic effects on the ecosystem. This review is based on a careful and systematic collection of the latest papers during 2010-2017 and our research results, and it illustrates the fate and ecological effects of Sb in the environment.
Collapse
Affiliation(s)
- Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Ningning Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaojing Long
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chengjun Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Congli Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Qianyun Zhong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ying Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Aneesa Pervaiz
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jun Shan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|