1
|
Liou TH, Wang SY, Lin YT, Yang S. Sustainable utilization of rice husk waste for preparation of ordered nanostructured mesoporous silica and mesoporous carbon: Characterization and adsorption performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
2
|
Li X, Ma Y, Zuo Y, Liu Z, Wang Q, Ren D, He Y, Cong H, Wu L, Zhou H. The efficient enrichment of marine peptides from the protein hydrolysate of the marine worm Urechis unicinctus by using mesoporous materials MCM-41, SBA-15 and CMK-3. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2405-2414. [PMID: 33997883 DOI: 10.1039/d1ay00616a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peptides found in marine life have various specific activities due to their special growth environment, and there is increasing interest in the isolation and concentration of these biofunctional compounds. In this study, the protein hydrolysate of the marine worm Urechis unicinctus was prepared by enzymolysis and enriched by using mesoporous materials of silica MCM-41 and SBA-15 and carbon CMK-3. The differences in pore structures and elemental composition of these materials lead to differences in surface area and hydrophobicity. The adsorption capacities of peptides were 459.5 mg g-1, 431.3 mg g-1, and 626.3 mg g-1 for MCM-41, SBA-15 and CMK-3, respectively. Adsorption kinetics studies showed that the pseudo-second-order model fit the adsorption process better, where both external mass transfer and intraparticle diffusion affected the adsorption, while the Langmuir model better fit the adsorption of peptides on MCM-41 and SBA-15 and the Freundlich model was more suitable for CMK-3. Aqueous acetonitrile (ACN, 50/50, v/v) yielded the most extracted peptides. MALDI-TOF mass spectrometry of the extracted peptides showed that the three mesoporous materials, especially the CMK-3, gave good enrichment results. This study demonstrates the great potential of mesoporous materials in the enrichment of marine biofunctional peptides.
Collapse
Affiliation(s)
- Xinwei Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, Liaoning 116023, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Wu R, Ye Q, Wu K, Dai H. Low-temperature (NO + O 2) adsorption performance of alkaline earth metal-doped C-FDU-15. J Environ Sci (China) 2021; 103:172-184. [PMID: 33743899 DOI: 10.1016/j.jes.2020.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
To improve the removal capacity of NO + O2 effectively, the alkaline earth metal-doped order mesoporous carbon (A-C-FDU-15(0.001) (A = Mg, Ca, Sr and Ba)) and Mg-C-FDU-15(x) (x = 0.001-0.003) samples were prepared, and their physicochemical and NO + O2 adsorption properties were determined by means of various techniques. The results show that the sequence in (NO + O2) adsorption performance was as follows: Mg-C-FDU-15(0.001) (93.2 mg/g) > Ca-C-FDU-15(0.001) (82.2 mg/g) > Sr-C-FDU-15(0.001) (76.1 mg/g) > Ba-C-FDU-15(0.001) (72.9 mg/g) > C-FDU-15 (67.1 mg/g). Among all of the A-C-FDU-15(0.001) samples, Mg-C-FDU-15(0.001) possessed the highest (NO + O2) adsorption capacity (106.2 mg/g). The species of alkaline earth metals and basic sites were important factors determining the adsorption of NO + O2 on the A-C-FDU-15(x) samples, and (NO + O2) adsorption on the samples was mainly chemical adsorption. Combined with the results of (NO + O2)-temperature-programmed desorption ((NO + O2)-TPD) and in situ diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) characterization, we deduced that there were two main pathways of (NO + O2) adsorption: one was first the conversion of NO and O2 to NO2 and then part of NO2 was converted to NO2- and NO3-; and the other was the direct oxidation of NO to NO2- and NO3-.
Collapse
Affiliation(s)
- Runping Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qing Ye
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Kai Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, and Laboratory of Catalysis Chemistry and Nanoscience, Department of Chemistry and Chemical Engineering, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
4
|
Wu R, Ye Q, Wu K, Dai H. Efficient abatement of NO x emitted from automotive engines via adsorption on the Ba-CMK-3 adsorbents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21369-21380. [PMID: 33410080 DOI: 10.1007/s11356-020-12077-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The Ba-CMK-3(x) (x was the Ba(NO3)2:CMK-3 mass ratio and equals to 5, 10, and 15 wt%) samples were prepared by the incipient impregnation method, which were used for the adsorption of NO + O2 at room temperature. The samples were characterized by the XRD, BET, TEM, TPD, TG, and DRIFTS techniques. The results showed that the CMK-3 and Ba-CMK-3(x) samples possessed an ordered two-dimensional hexagonal mesoporous structure, and Ba was uniformly dispersed on the surface of CMK-3. After Ba doping, the surface areas and pore size distributions of the Ba-CMK-3(x) samples were altered due to the synergistic effect of partial blocking of the channels by Ba and partial etching of the carbon materials by O2 produced from Ba(NO2)3 decomposition at high temperatures. The sequence in NO adsorption capacity was Ba-CMK-3(10) (108.1 ± 0.55 mg/g) > Ba-CMK-3(15) (106.2 ± 0.72 mg/g) > Ba-CMK-3(5) (102.3 ± 1.33 mg/g) > CMK-3(88.8 ± 1.15 mg/g), with the Ba-CMK-3(10) sample showing the best (NO + O2) adsorption performance. We proposed the two main adsorption pathways in the process of NO adsorption: (i) NO reacted with O2 to form NO2, part of NO2 were weakly adsorbed on the surface hydroxyl groups, part of NO2 were adsorbed to form the nitrite and nitrate species, and the left NO2 was disproportionated to the NO, NO2-, and NO3- species; and (ii) NO was directly oxidized to the NO2- species by the oxygen-containing functional groups in carbon, and then some of the NO2- species were transformed to the NO3- species directly or via disproportionation. The regeneration efficiencies of the Ba-CMK-3(x) samples were slightly inferior to that of the CMK-3 sample.
Collapse
Affiliation(s)
- Runping Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Qing Ye
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| | - Kai Wu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
5
|
Wu R, Ye Q, Wu K, Dai H. Potassium-modified ordered mesoporous carbon materials (K-CMK-3): Highly efficient adsorbents for NO adsorption at low temperatures. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Wu T, Qi P, Wang J, Wang Z, Di S, Xu H, Zhao H, Zhao C, Wang X. Simultaneous determination of 114 pesticides in complex Chinese herbal medicine Fritillaria using ordered mesoporous carbon CMK-3 as a reversed-dispersive solid phase extraction sorbent. RSC Adv 2021; 11:4129-4137. [PMID: 35424355 PMCID: PMC8694350 DOI: 10.1039/d0ra07229j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/04/2021] [Indexed: 11/21/2022] Open
Abstract
Fritillaria, a traditional Chinese herbal medicine, is classified into many medicinal species and contains numerous complex components. It is thus difficult to simultaneously detect multiple pesticide residues in different Fritillaria species. An easy, reliable, and widely applicable analytical method based on a modified Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method coupled with LC-MS/MS was developed to solve these problems encountered during pesticide residue analysis in complex Fritillaria matrices. Ordered mesoporous carbon CMK-3 and a primary secondary amine (PSA) were used as efficient purification sorbents by optimization of the QuEChERS process. Systematic method validation was performed for four species of Fritillaria. The matrix effect of pesticides varied among different Fritillaria species, and matrix-matched standard solutions were thus employed for quantitative analysis. The mean recoveries of all pesticides ranged from 88.6% to 95.5%, with mean relative standard deviations (RSD) lower than 6% at spiked concentrations of 30, 120, and 240 μg kg−1. The limits of quantification (LOQ) for the developed method were in the range of 30–120 μg kg−1. This method was further used to analyze 47 Fritillaria samples from Zhejiang province, China, and seven pesticides were detected in 22 Fritillaria samples. These results demonstrate that the developed method is suitable for an accurate analysis of multiple pesticide residues in various Fritillaria. Fritillaria, a traditional Chinese herbal medicine, is classified into many medicinal species and contains numerous complex components.![]()
Collapse
Affiliation(s)
- Tong Wu
- College of Agriculture, Northeast Agricultural University No. 600 Changjiang Road Harbin 150030 P. R. China +86 451 55191775
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences Hangzhou 310021 P. R. China +86 571 86419051.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection Hangzhou 310021 P. R. China.,Key Laboratory of Detection for Pesticide Residue and Control of Zhejiang Hangzhou 310021 P. R. China
| | - Jiao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences Hangzhou 310021 P. R. China +86 571 86419051.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection Hangzhou 310021 P. R. China.,Key Laboratory of Detection for Pesticide Residue and Control of Zhejiang Hangzhou 310021 P. R. China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences Hangzhou 310021 P. R. China +86 571 86419051.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection Hangzhou 310021 P. R. China.,Key Laboratory of Detection for Pesticide Residue and Control of Zhejiang Hangzhou 310021 P. R. China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences Hangzhou 310021 P. R. China +86 571 86419051.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection Hangzhou 310021 P. R. China.,Key Laboratory of Detection for Pesticide Residue and Control of Zhejiang Hangzhou 310021 P. R. China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences Hangzhou 310021 P. R. China +86 571 86419051.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection Hangzhou 310021 P. R. China.,Key Laboratory of Detection for Pesticide Residue and Control of Zhejiang Hangzhou 310021 P. R. China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences Hangzhou 310021 P. R. China +86 571 86419051.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection Hangzhou 310021 P. R. China.,Key Laboratory of Detection for Pesticide Residue and Control of Zhejiang Hangzhou 310021 P. R. China
| | - Changshan Zhao
- College of Agriculture, Northeast Agricultural University No. 600 Changjiang Road Harbin 150030 P. R. China +86 451 55191775
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences Hangzhou 310021 P. R. China +86 571 86419051.,Agricultural Ministry Key Laboratory for Pesticide Residue Detection Hangzhou 310021 P. R. China.,Key Laboratory of Detection for Pesticide Residue and Control of Zhejiang Hangzhou 310021 P. R. China
| |
Collapse
|
7
|
Liou TH, Wang PY. Utilization of rice husk wastes in synthesis of graphene oxide-based carbonaceous nanocomposites. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 108:51-61. [PMID: 32344300 DOI: 10.1016/j.wasman.2020.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Rice husk is an agricultural waste-based biomass that can provide an alternative renewable source of bioenergy. Rice husk carbon and rice husk ash are major solid residues obtained after converting rice husk to bioenergy. This paper reports the synthesis of two graphene oxide-based activated carbons using rice husk carbon through H3PO4 and ZnCl2 activation, respectively. By contrast, mesoporous silica was produced using recycled rice husk ash. Graphene oxide/ordered mesoporous carbon was prepared using mesoporous silica as a template source. These composites were inspected using a Raman spectrometer, Fourier transform infrared spectrometer, transmission electron microscope, field-emission scanning electron microscope, X-ray diffractometer, and surface area analyzer. Experimental results indicated that graphene oxide-based H3PO4 activated carbon, ZnCl2 activated carbon, and ordered mesoporous carbon had a surface area of 361, 732, and 936 m2/g, respectively; a pore volume of 0.299, 0.581, and 1.077 cm3/g, respectively; and an average pore size of 2.31, 3.17, and 4.35 nm, respectively. The carbonaceous composites with graphene oxide exhibited a higher adsorption ability than did pure carbon materials without graphene oxide. The maximum adsorption capacities using methylene blue as adsorbate followed the order of ordered mesoporous carbon (1591 mg/g) > ZnCl2 activated carbon (899 mg/g) > H3PO4 activated carbon (747 mg/g). The isothermal adsorption and kinetics study for graphene oxide/ordered mesoporous carbon indicated that adsorption followed the Langmuir isotherm model and pseudo-second order kinetic model. Rice husk waste has excellent prospective potential for producing highly valuable nanoproducts and for reducing environmental pollution.
Collapse
Affiliation(s)
- Tzong-Horng Liou
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan, New Taipei 24301, Taiwan; Battery Research Center of Green Energy, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan, New Taipei 24301, Taiwan.
| | - Pie-Ying Wang
- Department of Chemical Engineering, Ming Chi University of Technology, 84 Gungjuan Rd., Taishan, New Taipei 24301, Taiwan
| |
Collapse
|