1
|
Morris DJP, Morris EK, Nichols M, Weidenhamer JD, Bilheux HZ, Cornwell PA, Stringfellow E, Zhang Y, Bilheux JC. Visualization of in-situ chemical flow through sand using neutron radiography. Appl Radiat Isot 2025; 217:111652. [PMID: 39798270 DOI: 10.1016/j.apradiso.2024.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025]
Abstract
Chemical movement through soil is an important process in agriculture and ecology. Observing the spatial and temporal dynamics of these processes using conventional chemical ecology methods requires techniques that are destructive and/or lack resolution. Neutron radiography has the capability to allow chemical motion through sand/soil to be tracked with high spatial and temporal resolution, and we show that it allows for the motion of hydrophobic and hydrophilic chemicals to be distinguished. This technique can have an important impact on introducing neutron radiography to a wider community and into our understanding of chemical communication dynamics between plants and movement of applied chemicals in agricultural soils.
Collapse
Affiliation(s)
- D J P Morris
- Department of Physics & Engineering, Xavier University, 3800 Victory Parkway, Cincinnati, OH, 45207, USA.
| | - E K Morris
- Department of Biology, Xavier University, 3800 Victory Parkway, Cincinnati, OH, 45207, USA.
| | - M Nichols
- Department of Biology, Xavier University, 3800 Victory Parkway, Cincinnati, OH, 45207, USA
| | - J D Weidenhamer
- Department of Chemistry, Geology & Physics, Ashland University, Ashland, OH, 44805, USA
| | - H Z Bilheux
- Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| | - P A Cornwell
- Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| | - E Stringfellow
- Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| | - Y Zhang
- Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| | - J-C Bilheux
- Neutron Sciences Directorate, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| |
Collapse
|
2
|
Wang P, Lv Y, Hou X, Yang X, Tao Q, Li G. Chitosan based fluorescent probe with AIE property for detection of Fe 3+ and bacteria. Int J Biol Macromol 2024; 279:135478. [PMID: 39250988 DOI: 10.1016/j.ijbiomac.2024.135478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Fluorescent probe with aggregation-induced emission (AIE) property has been widely used because of the advantages of high sensitivity, good selectivity and non-destructive testing. The development of fluorescent probe with good biocompatibility, photostability and biodegradability is of great significance in biomedicine and environmental detection. Herein, a novel type of fluorophore CS-TPE for detection of Fe3+ and bacteria was prepared by the Schiff base reaction of chitosan (CS) and 4-(1,2,2-triphenylethenyl) benzaldehyde (TPE-CHO). The fluorescence response mechanism of CS-TPE system was investigated by various characterization techniques. CS-TPE had an obvious AIE behavior with strong blue-green emissions at 473 nm and reaches the highest photoluminescence (PL) emission in 90 % H2O/ethanol mixtures. CS-TPE fluorescent probe exhibited sensitive quenching response to Fe3+, which can be used as a biosensor for detecting the concentration of Fe3+ with short response time (5 min), low detection limit (0.998 μM) and wide detection range (10-300 μM). Meanwhile, CS-TPE exhibited good antibacterial performance for S. aureus and E. coli. It is expected to realize the real-time fluorescence monitoring of metal ion detection and antibacterial process.
Collapse
Affiliation(s)
- Peiyao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yupeng Lv
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Xinhui Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xiaoluan Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Qian Tao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China.
| |
Collapse
|
3
|
Bian Y, Qu X, Zhang F, Zhang Z, Kang J. The Monitoring and Cell Imaging of Fe 3+ Using a Chromone-Based Fluorescence Probe. Molecules 2024; 29:1504. [PMID: 38611784 PMCID: PMC11013790 DOI: 10.3390/molecules29071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A new structurally simple fluorescent CP probe based on chromone was designed and synthesized, and its structure was fully characterized using various analytical techniques. The CP probe displays a high selectivity and sensitivity for sensing Fe3+ with a "turn-off" fluorescence response over other metal ions in a DMSO/H2O (4:1, v/v) solution. The experiment results show that the CP probe is stable over a wide pH range of 2.0-12.0. The detection limit for Fe3+ was calculated to be 0.044 μmol•L-1. The molar ratio method indicated that the binding mode between the CP probe and Fe3+ is a 1:1 complex formation. HR-MS and density functional theory (DFT) calculations were also performed to further confirm the recognition mechanism. Both fluorescence imaging experiments and the MTT assay demonstrated that the CP probe was suitable for detecting intracellular Fe3+ and no significant cytotoxicity in living cells.
Collapse
Affiliation(s)
- Yongjun Bian
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China; (X.Q.); (Z.Z.); (J.K.)
| | - Xingyu Qu
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China; (X.Q.); (Z.Z.); (J.K.)
| | - Fengying Zhang
- Department of Materials Science and Engineering, Jinzhong University, Jinzhong 030619, China
| | - Zhengwei Zhang
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China; (X.Q.); (Z.Z.); (J.K.)
| | - Jin Kang
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China; (X.Q.); (Z.Z.); (J.K.)
| |
Collapse
|
4
|
Lalitha R, Velmathi S. A Study of Small Molecule-Based Rhodamine-Derived Chemosensors and their Implications in Environmental and Biological Systems from 2012 to 2021: Latest Advancement and Future Prospects. J Fluoresc 2024; 34:15-118. [PMID: 37212978 DOI: 10.1007/s10895-023-03231-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/28/2023] [Indexed: 05/23/2023]
Abstract
Rhodamine-based chemosensors have sparked considerable interest in recent years due to their remarkable photophysical properties, which include high absorption coefficients, exceptional quantum yields, improved photostability, and significant red shifts. This article presents an overview of the diverse fluorometric, and colorimetric sensors produced from rhodamine, as well as their applications in a wide range of fields. The ability of rhodamine-based chemosensors to detect a wide range of metal ions, including Hg+2, Al3+, Cr3+, Cu2+, Fe3+, Fe2+, Cd2+, Sn4+, Zn2+, and Pb2+, is one of their major advantages. Other applications of these sensors include dual analytes, multianalytes, and relay recognition of dual analytes. Rhodamine-based probes can also detect noble metal ions such as Au3+, Ag+, and Pt2+. They have been used to detect pH, biological species, reactive oxygen and nitrogen species, anions, and nerve agents in addition to metal ions. The probes have been engineered to undergo colorimetric or fluorometric changes upon binding to specific analytes, rendering them highly selective and sensitive by ring-opening via different mechanisms such as Photoinduced Electron Transfer (PET), Chelation Enhanced Fluorescence (CHEF), Intramolecular Charge Transfer (ICT), and Fluorescence Resonance Energy Transfer (FRET). For improved sensing performance, light-harvesting dendritic systems based on rhodamine conjugates has also been explored for enhanced sensing performance. These dendritic arrangements permit the incorporation of numerous rhodamine units, resulting in an improvement in signal amplification and sensitivity. The probes have been utilised extensively for imaging biological samples, including imaging of living cells, and for environmental research. Moreover, they have been combined into logic gates for the construction of molecular computing systems. The usage of rhodamine-based chemosensors has created significant potential in a range of disciplines, including biological and environmental sensing as well as logic gate applications. This study focuses on the work published between 2012 and 2021 and emphasises the enormous research and development potential of these probes.
Collapse
Affiliation(s)
- Raguraman Lalitha
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620 015, India.
| |
Collapse
|
5
|
Xu W, Ahmed F, Xiong H. A mitochondria-targeted fluorescent probe based on biocompatible RBH-U for the enhanced response of Fe 3+ in living cells and quenching of Cu 2+ in vitro. Anal Chim Acta 2023; 1249:340925. [PMID: 36868767 DOI: 10.1016/j.aca.2023.340925] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
A rhodamine hydrazide conjugating uridine moiety (RBH-U) is firstly synthesized by screening different synthetic routes, and then developed as a fluorescence probe for selective detection of Fe3+ ions in an aqueous solution, accompanied by visual color change with naked eyes. Upon the addition of Fe3+ in a 1:1 stoichiometry, a 9-fold enhancement in the fluorescence intensity of the RBH-U was observed with an emission wavelength of 580 nm. In the presence of other metal ions, the "turn-on" fluorescent probe with pH-independent (value 5.0 to 8.0) is remarkably specific for Fe3+ with a detection limit as low as 0.34 μM. Further, the enhanced fluorescence intensity of RBH-U- Fe3+ can be quenched as a switch-off sensor to assist in the recognition of Cu2+ ions. Additionally, the colocalization assay demonstrated that RBH-U containing uridine residue can be used as a novel mitochondria-targeted fluorescent probe with rapid reaction time. Cytotoxicity and cell imaging of RBH-U probe in live NIH-3T3 cells suggest that it can be a potential candidate for clinical diagnosis and Fe3+ tracking toll for the biological system due to its biocompatibility and nontoxicity in NIH-3T3 cells even up to 100 μM.
Collapse
Affiliation(s)
- Weiqing Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
6
|
Shi C, Luo J, Wang Y, Ding L, Liang Q, Yang Z, Lu J, Wu A. A water-soluble naphthalimide fluorescent probe for Cr 2O 72- and Fe 3+ based on inner filter effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122245. [PMID: 36535222 DOI: 10.1016/j.saa.2022.122245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
A probe 3 (2-ethoxy-N-(2-(2-(2-hydroxyethoxy)ethyl)-1,3-dioxo-2,3-dihydro-1H-benzo[de] isoquinolin-6-yl)benzamide) that could selectively respond to Cr2O72- and Fe3+ was reported in this paper. The selectivity, pH titration, concentration titration, detection limit, time dependence, quenching constant and recognition mechanism of probe 3 for Cr2O72- and Fe3+ were studied in CH3CN/HEPES buffer solution. The results showed that Cr2O72- and Fe3+ could rapidly quench the fluorescence of probe 3 through the inner filter effect (IFE). The quenching kept constant after 30 s, and the quenching constants were 7.99 × 103 L.mol-1 and 4.13 × 103 L.mol-1, respectively. The detection limits of probe 3 for Cr2O72- and Fe3+ were 1.15 μmol.L-1 and 1.95 μmol.L-1, respectively, which were lower than the maximum allowable concentrations in drinking water stipulated by EPA. The determination results of Cr2O72- and Fe3+ in water samples indicated that probe 3 could be used as a potential detection tool in practical applications.
Collapse
Affiliation(s)
- Chuntian Shi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Jiangxiong Luo
- College of Mechanical & Vehicle Engineering, Hunan University, Changsha 410082, PR China
| | - Yijun Wang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Ling Ding
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Qingxiang Liang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Zhihui Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Jihao Lu
- School of Science, Tianjin Chengjian University, Tianjin 300392, PR China
| | - Aibin Wu
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| |
Collapse
|
7
|
A Highly Sensitive and Selective Quinazoline-Based Colorimetric Probe for Naked-Eye Detection of Fe3+ Ions. J Fluoresc 2022; 32:2309-2318. [DOI: 10.1007/s10895-022-03016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022]
|
8
|
Bayraktutan T, Gür B, Onganer Y. A new FRET-based functional chemosensor for fluorometric detection of Fe3+and its validation through in silico studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Qiu X, Huang J, Wang N, Zhao K, Cui J, Hao J. Facile Synthesis of Water-Soluble Rhodamine-Based Polymeric Chemosensors via Schiff Base Reaction for Fe 3+ Detection and Living Cell Imaging. Front Chem 2022; 10:845627. [PMID: 35295976 PMCID: PMC8919081 DOI: 10.3389/fchem.2022.845627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Quantitative and accurate determination of iron ions play a vital role in maintaining environment and human health, but very few polymeric chemosensors were available for the detection of Fe3+ in aqueous solutions. Herein, a water-soluble rhodamine-poly (ethylene glycol) conjugate (DRF-PEG), as a dual responsive colorimetric and fluorescent polymeric sensor for Fe3+ detection with high biocompatibility, was first synthesized through Schiff base reaction between rhodamine 6G hydrazide and benzaldehyde-functionalized polyethylene glycol. As expected, the introduction of PEG segment in DRF-PEG significantly improved the water solubility of rhodamine derivatives and resulted in a good biosensing performance. The detection limit of DRF-PEG for Fe3+ in pure water is 1.00 μM as a fluorescent sensor and 3.16 μM as a colorimetric sensor at pH 6.5. The specific sensing mechanism of DRF-PEG toward Fe3+ is proposed based on the intramolecular charge transfer (ICT) mechanism, in which the O and N atoms in rhodamine moiety, together with the benzene groups from benzaldehyde-modified PEG segment, participate in coordination with Fe3+. Furthermore, DRF-PEG was applied for the ratiometric imaging of Fe3+ in HeLa cells and showed the potential for quantitative determination of Fe3+ in fetal bovine serum samples. This work provides insights for the design of water-soluble chemosensors, which can be implemented in iron-related biological sensing and clinical diagnosis.
Collapse
Affiliation(s)
- Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of the Ministry of Education, Center for Advanced Jet Engineering Technologies (CaJET), School of Mechanical Engineering, Shandong University, Jinan, China
| | - Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| |
Collapse
|
10
|
Fernandes RS, Shetty NS, Mahesha P, Gaonkar SL. A Comprehensive Review on Thiophene Based Chemosensors. J Fluoresc 2022; 32:19-56. [PMID: 34623559 PMCID: PMC8755703 DOI: 10.1007/s10895-021-02833-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022]
Abstract
The recognition and sensing of various analytes in aqueous and biological systems by using fluorometric or colorimetric chemosensors possessing high selectivity and sensitivity, low cost has gained enormous attention. Furthermore, thiophene derivatives possess exceptional photophysical properties compared to other heterocycles, and therefore they can be employed in chemosensors for analyte detection. In this review, we have tried to explore the design and detection mechanism of various thiophene-based probes, practical applicability, and their advanced models (design guides), which could be thoughtful for the synthesis of new thiophene-based probes. This review provides an insight into the reported chemosensors (2008-2020) for thiophene scaffold as effective emission and absorption-based chemosensors.
Collapse
Affiliation(s)
- Rikitha S Fernandes
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India
| | - Nitinkumar S Shetty
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India.
| | - Priyanka Mahesha
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India
| | - Santhosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, 576104, Manipal, Karnataka, India
| |
Collapse
|
11
|
Shi C, Yu M, Wu A, Luo J, Li X, Wang N, Shu W, Yu W. A Water-Soluble Naphthalimide-Based Fluorescent Probe for Specific Sensing of Fe 3+ and $\text{C}{{\text{r}}_{2}}\text{O}_{7}^{2-}$. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Wazuddin DA, Mujawar LH, Abduljabbar TN, El-Shahawi MS. In-situ droplet assay on wax-modified paper for rapid and trace determination of Fe3+ in water. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Oguz M, Gul A, Kursunlu AN, Yilmaz M. A bifunctional and multi-responsive fluorescent sensor for toxic analytes in the aqueous medium: Easy synthesis, NIR-visible effect, imaging in living cells. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Hu JP, Yang HH, Lin Q, Yao H, Zhang YM, Wei TB, Qu WJ. A rhodamine-based dual chemosensor for the naked-eye detection of Hg 2+ and enhancement of the fluorescence emission for Fe 3. Photochem Photobiol Sci 2020; 19:1690-1696. [PMID: 33206102 DOI: 10.1039/d0pp00302f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel fluorescent chemosensor based on trimesoyl chloride-rhodamine (TR) was successfully synthesized. Rising chromogenic and fluorogenic spectral enhancements could be observed in trimesoyl chloride-rhodamine (TR) probes when Hg2+ and Fe3+ were added, respectively. TR has shown selectivity for Hg2+ and Fe3+ with high sensitivity due to metal ion complexation induced photophysical "turn-on" signaling responses. The detection limit towards Hg2+ was 2.46 × 10-8 M as determined by the 3σ method. At the same time, fluorogenic spectral enhancements were observed in TR, which exhibits a superior sensitive and selective recognition towards Fe3+ with 4.11 × 10-8 M of the detection limit. The test strips were used for colorimetric and simple detection towards Hg2+, which might finally enable the advancement of the Hg2+ sensor in the field of on-site detection.
Collapse
Affiliation(s)
- Jian-Peng Hu
- Key Laboratory of Polymer Materials of Gansu Province, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Korzec M, Malarz K, Mrozek-Wilczkiewicz A, Rzycka-Korzec R, Schab-Balcerzak E, Polański J. Live cell imaging by 3-imino-(2-phenol)-1,8-naphthalimides: The effect of ex vivo hydrolysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118442. [PMID: 32408229 DOI: 10.1016/j.saa.2020.118442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
A series of 3-amino-N-substituted-1,8-naphthalimides and their salicylic Schiff base derivatives were synthesized. The structure of the obtained compounds was confirmed using 1H and 13C NMR, FT-IR spectroscopy and elemental analysis and COSY and HMQC for the representative molecules. The photophysical (UV-Vis, PL) and biological properties of all of the prepared compounds were studied. It was found that the amine with the n-hexyl group in EtOH had the highest PL quantum yield (Ф = 85%) compared to the others. Moreover, the chelating properties of the azomethines with the n-hexyl group (1a, 1b, 1c) were tested against various cations (Al3+, Ba2+, Co2+, Cu2+, Cr3+, Fe2+, Fe3+, Mn2+, Ni2+, Pb2+, Sr2+ and Zn2+) in an acetonitrile, acetone and PBS/AC mixture. Compounds that contained the electron withdrawing groups (-Br, -I) had the ability to chelate most of the studied cations, while the unsubstituted derivative chelated only the trivalent cations such as Al3+, Cr3+ and Fe3+ in acetonitrile. The effect of the environment on the keto-enol tautomeric equilibrium was also demonstrated, especially in the case of the derivative with a bromine atom. The biological studies showed that the tested molecules had no cytotoxicity. Additionally, the ability to image intracellular organelles such as the mitochondria and endoplasmic reticulum was revealed. The crucial role of the hydrolysis of imines for cellular imaging was presented.
Collapse
Affiliation(s)
- Mateusz Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland.
| | - Katarzyna Malarz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chelkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Roksana Rzycka-Korzec
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Ewa Schab-Balcerzak
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland
| | - Jarosław Polański
- Institute of Chemistry, University of Silesia in Katowice, 9 Szkolna Str., 40-006 Katowice, Poland; Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
16
|
Lee SC, Park S, So H, Lee G, Kim KT, Kim C. An Acridine-Based Fluorescent Sensor for Monitoring ClO - in Water Samples and Zebrafish. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4764. [PMID: 32842534 PMCID: PMC7506904 DOI: 10.3390/s20174764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022]
Abstract
A novel acridine-based fluorescent chemosensor, BK ((E)-2-((acridine-9-ylimino)methyl)-N-benzhydrylhydrazine-1-carbothioamide), for monitoring ClO- was prepared. The sensor BK was synthesized by introducing a new synthetic route of making aldehyde group using formic hydrazide. Probe BK displayed notable fluorescence quenching in the presence of ClO- and showed a great selectivity over other guest analytes. The detection limit was calculated to be 7.65 μM. Additionally, BK was satisfactorily applied for sensing ClO- in water samples and zebrafish.
Collapse
Affiliation(s)
- Su Chan Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 136-741, Korea; (S.C.L.); (S.P.); (H.S.)
| | - Soyoung Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 136-741, Korea; (S.C.L.); (S.P.); (H.S.)
| | - Haeri So
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 136-741, Korea; (S.C.L.); (S.P.); (H.S.)
| | - Gyudong Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 136-741, Korea;
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 136-741, Korea;
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 136-741, Korea; (S.C.L.); (S.P.); (H.S.)
| |
Collapse
|