1
|
Synergetic photodegradation via inorganic–organic hybridization strategies: a review on preparations and applications of nanoparticle-hybridized polyaniline photocatalysts. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03390-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
2
|
El‐Fawal EM. Visible Light‐Driven BiOBr/Bi2S3@CeMOF Heterostructured Hybrid with Extremely Efficient Photocatalytic Reduction Performance of Nitrophenols: Modeling and Optimization. ChemistrySelect 2021. [DOI: 10.1002/slct.202101732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Esraa M. El‐Fawal
- Analysis and Evaluation Department Central analytical Laboratories Egyptian Petroleum Research Institute PO Box 11727 Nasr City Cairo Egypt
| |
Collapse
|
3
|
Younis SA, Serp P, Nassar HN. Photocatalytic and biocidal activities of ZnTiO 2 oxynitride heterojunction with MOF-5 and g-C 3N 4: A case study for textile wastewater treatment under direct sunlight. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124562. [PMID: 33250306 DOI: 10.1016/j.jhazmat.2020.124562] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 05/21/2023]
Abstract
The work aimed to synthesize three heterojunction photocatalysts (Eg = 2.65-2.78 eV) via in-situ encapsulation of 5% zinc doped titanium oxynitride (Zn0.05TiOxNy) catalyst into MOF-5 and bulk (BCN)/sulfur-doped (SCN) g-C3N4 supports using a microwave method. The prepared photocatalysts were characterized and utilized to purify textile industrial wastewater from the organic dye (e.g., methylene blue, MB) and microbial (e.g., E. coli, S. aureus, and C. albicans) contaminants under dark, visible, and solar lights. The output data confirmed the higher activity of Zn0.05TiOxNy@SCN and Zn0.05TiOxNy@MOF-5 for photo-induced microbial growth inactivation (> 90%) under visible light, with photo-biocidal efficiency of 0.91-1.69 mCFU/Einstein. Such a phenomenon is ascribed to the synergism between the high antimicrobial capacity of supports and photoactivity of Zn0.05TiOxNy. Also, Zn0.05TiOxNy@SCN exhibited far superiority to mineralize MB dye (Kphoto of 2.73 × 10-2 min-1) under direct sunlight due to its high photonic (ζ% of 4.4-8.3%)/quantum (QE of 0.56-0.54%) efficiencies for the generation of hydroxyl and superoxide (-•O2/•OH) oxidative species. As a practical case study, all heterojunction photocatalysts also demonstrated high-performance stability (5 cycles) for real textile wastewater treatment under sunlight (efficiency = 76.1-84.6%).
Collapse
Affiliation(s)
- Sherif A Younis
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 1172, Egypt; Central Laboratories, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt; Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt.
| | - Philippe Serp
- Laboratoire de Chimie de Coordination UPR CNRS 8241, Composante ENSIACET, Université de Toulouse, UPS-INP-LCC, 4 Allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4, France.
| | - Hussein N Nassar
- Petroelum Biotechnology Lab., Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt; Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt; Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| |
Collapse
|
4
|
Elshamy OA, El‐Fawal EM. Synthesis of NiFe
2
O
4
@AC/UiO‐66(Zr) for Enhancement of the Photocatalytic Performance of Alizarin Yellow R Under Visible‐light. ChemistrySelect 2021. [DOI: 10.1002/slct.202004567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Omnia A. Elshamy
- Analysis and Evaluation Department Central analytical Laboratories Egyptian Petroleum Research Institute, PO Box 11727 Nasr City Cairo Egypt
| | - Esraa M. El‐Fawal
- Analysis and Evaluation Department Central analytical Laboratories Egyptian Petroleum Research Institute, PO Box 11727 Nasr City Cairo Egypt
| |
Collapse
|
5
|
Zhang L, Ma P, Dai L, Li S, Yu W, Guan J. In situ crystallization and growth of TiO 2 nanospheres between MXene layers for improved adsorption and visible light photocatalysis. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00239b] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In situ crystallization and growth of TiO2 nanospheres between MXene layers, which exhibited an intense adsorption capacity and improved visible light photocatalysis.
Collapse
Affiliation(s)
- Li Zhang
- Research Center of Resource Recycling Science and Engineering
- School of Environmental and Materials Engineering
- Shanghai Polytechnic University
- Shanghai 201209
- People's Republic of China
| | - Pingping Ma
- Research Center of Resource Recycling Science and Engineering
- School of Environmental and Materials Engineering
- Shanghai Polytechnic University
- Shanghai 201209
- People's Republic of China
| | - Li Dai
- Research Center of Resource Recycling Science and Engineering
- School of Environmental and Materials Engineering
- Shanghai Polytechnic University
- Shanghai 201209
- People's Republic of China
| | - Shijie Li
- Innovation & Application Institute
- Zhejiang Ocean University
- Zhoushan 316022
- People's Republic of China
| | - Wei Yu
- Research Center of Resource Recycling Science and Engineering
- School of Environmental and Materials Engineering
- Shanghai Polytechnic University
- Shanghai 201209
- People's Republic of China
| | - Jie Guan
- Research Center of Resource Recycling Science and Engineering
- School of Environmental and Materials Engineering
- Shanghai Polytechnic University
- Shanghai 201209
- People's Republic of China
| |
Collapse
|
6
|
Synthesis, Characterization, and Photocatalytic Performance of ZnO–Graphene Nanocomposites: A Review. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs5010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ZnO is an exciting material for photocatalysis applications due to its high activity, easy accessibility of raw materials, low production costs, and nontoxic. Several ZnO nano and microstructures can be obtained, such as nanoparticles, nanorods, micro flowers, microspheres, among others, depending on the preparation method and conditions. ZnO is a wide bandgap semiconductor presenting massive recombination of the generated charge carriers, limiting its photocatalytic efficiency and stability. It is common to mix it with metal, metal oxide, sulfides, polymers, and nanocarbon-based materials to improve its photocatalytic behavior. Therefore, ZnO–nanocarbon composites formation has been a viable alternative that leads to new, more active, and stable photocatalytic systems. Mainly, graphene is a well-known two-dimensional material, which could be an excellent candidate to hybridize with ZnO due to its excellent physical and chemical properties (e.g., high specific surface area, optical transmittance, and thermal conductivity, among others). This review analyses ZnO–graphene nanocomposites’ recent advances, addressing the synthesis methods and the resulting structural, morphological, optical, and electronic properties. Moreover, we examine the ZnO–graphene composites’ role in the photocatalytic degradation of organic/inorganic pollutants.
Collapse
|
7
|
Measuring the Electrical and Photonic Properties of Cobalt Oxide-Containing Composite Carbon Fibers. JOURNAL OF COMPOSITES SCIENCE 2020. [DOI: 10.3390/jcs4040156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, cobalt acetate was incorporated into polyacrylonitrile (PAN) polymer through electrospinning as the cobalt oxide source. After oxidization and pyrolysis, a PAN-derived composite carbon fiber containing cobalt oxide was obtained. Measuring the electrical and photonic properties of the composite fiber under visible light irradiation was performed to evaluate the photoelectric behavior of the composite fiber. The p-type semiconducting behavior of the composite fiber was confirmed by measuring the open circuit voltage of a photochemical fuel cell consisting of the photosensitive electrode made from the composite fiber. The application of the composite fiber for glucose sensing was demonstrated.
Collapse
|
8
|
Designing AgFeO2-graphene/Cu2(BTC)3 MOF heterojunction photocatalysts for enhanced treatment of pharmaceutical wastewater under sunlight. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112746] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Heterogeneous Photocatalysis Scalability for Environmental Remediation: Opportunities and Challenges. Catalysts 2020. [DOI: 10.3390/catal10101109] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Heterogeneous photocatalysis is an ecofriendly technique for purifying organic pollutants in environmental systems. While pilot-scale photoreactors have explored photocatalytic system upscalibility, their practical implementation is restricted for various reasons. These include feed composition alteration, complicated photoreactor designs, high operation and synthesis costs, photocatalyst poisoning, low quantum yield under solar irradiation, fast exciton recombination, and low reuse or regeneration capabilities. In this paper, we highlight the photocatalyst scalability challenges for real-world applications. We also provide an in-depth discussion on photocatalyst opportunities for effective air and water pollution control. Lastly, we offer a contemporary perspective on photocatalysis scale-up for the real environmental treatment.
Collapse
|