1
|
Lan Y, Zhou L, Liu S, Wan R, Wang N, Chen D, Li Y, Jiang Y, Rao Z, Jiang W, Song D, Tan Q, Yang F. Light absorption enhancement of black carbon and its impact factors during winter in a megacity of the Sichuan Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170374. [PMID: 38307267 DOI: 10.1016/j.scitotenv.2024.170374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 02/04/2024]
Abstract
Carbonaceous aerosols play a vital role in global climate patterns due to their potent light absorption capabilities. However, the light absorption enhancement effect (Eabs) of black carbon (BC) is still subject to great uncertainties due to factors such as the mixing state, coating material, and particle size distribution. In this study, fine particulate matter (PM2.5) samples were collected in Chengdu, a megacity in the Sichuan Basin, during the winter of 2020 and 2021. The chemical components of PM2.5 and the light absorption properties of BC were investigated. The results revealed that secondary inorganic aerosols and carbonaceous aerosols were the dominant components in PM2.5. Additionally, the aerosol filter filtration-dissolution (AFD) treatment could improve the accuracy of measuring elemental carbon (EC) through thermal/optical analysis. During winter in Chengdu, the absorption enhancement values of BC ranged between 1.56 and 2.27, depending on the absorption wavelength and the mixing state of BC and non-BC materials. The presence of internally mixed BC and non-BC materials significantly contributed to Eabs, accounting for an average of 68 % at 405 nm and 100 % at 635 nm. The thickness of the BC coating influenced Eabs, displaying an increasing-then-decreasing trend. This trend was primarily attributed to the hygroscopic growth and dehydration shrinkage of particulate matter. Nitrate, as the major component of BC coating, played a crucial role in the lensing effect and exhibited fast growth during variation in Eabs. By combining the results from PMF, we identified the secondary formation and vehicle emission as the primary contributors to Eabs. Consequently, this study can provide valuable insights into the optical parameters, which are essential for assessing the environmental quality, improving regional atmospheric conditions, and formulating effective air pollution control strategies.
Collapse
Affiliation(s)
- Yuting Lan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Li Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China.
| | - Song Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Ruilin Wan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Ning Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Dongyang Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Yi Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| | - Yan Jiang
- Sichuan Ecological Environment Monitoring Center, Chengdu 610091, China
| | - Zhihan Rao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China; Sichuan Ecological Environment Monitoring Center, Chengdu 610091, China
| | - Wanting Jiang
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Danlin Song
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Qinwen Tan
- Chengdu Academy of Environmental Sciences, Chengdu 610072, China
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China; College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644600, China
| |
Collapse
|
2
|
Wang W, Zhang X, Wang M, Wang M, Chen C, Wang X. Characterization and sources of water-soluble inorganic ions during sulfate-driven and nitrate-driven haze on the largest loess accumulation plateau. CHEMOSPHERE 2023; 343:140261. [PMID: 37748660 DOI: 10.1016/j.chemosphere.2023.140261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
With the rapid reduction of anthropogenic SO2 emissions, the critical driver of haze in China has shifted from being dominated by sulfate to alternating sulfate and nitrate. Haze induced by different driver species may differ in the chemical forms of water-soluble inorganic ions (WSIIs). The unique topography and high-emission industrial agglomeration of the Loess Plateau determine its severe local PM2.5 pollution and influence global weather patterns through the outward export of pollutants. PM2.5 samples were conducted in Pingyao, on the eastern Loess Plateau of China, in autumn and winter. The average mass of PM2.5 was 88.82 ± 57.37 μg/m3; sulfate, nitrate, and ammonium were the dominant component. The chemical form of the ion was dominated by (NH4)2SO4, NH4NO3, NaNO3 and KNO3 during the nitrate-driven (ND) haze, while (NH4)2SO4, NH4HSO4, NH4NO3, NaNO3 and KNO3 were predominant species during the sulfate-driven (SD) haze. Heterogeneous oxidation reactions dominated the mechanism of sulfate formation. Primary sulfate emissions or other generation pathways contributed to sulfate formation during the SD haze. The gas-phase homogeneous reaction of NO2 and NH3 dominates the nitrate generation during the ND haze. The heterogeneous reactions also played an essential role during the SD haze. Nitrate aerosol (42.30%) and coal and biomass combustion (23.23%) were the dominant sources of WSIIs during the ND haze. In comparison, nitrate aerosol (31.80%) and sulfate aerosol (25.08%) were considered the primary control direction during the SD haze. The chemical characteristics and sources of aerosols under various types of haze differ significantly, and knowledge gained from this investigation provides insight into the causes of heavy haze.
Collapse
Affiliation(s)
- Wenju Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Xuechun Zhang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Mingshi Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Mingya Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454003, China.
| | - Chun Chen
- Henan Ecological Environment Monitoring and Safety Center, Zhengzhou, 450046, China; Henan Key Laboratory for Environmental Monitoring Technology, Zhengzhou, 450004, China
| | - Xiyue Wang
- Henan Ecological Environment Monitoring and Safety Center, Zhengzhou, 450046, China; Henan Key Laboratory for Environmental Monitoring Technology, Zhengzhou, 450004, China
| |
Collapse
|
3
|
Zhang B, Shen H, Liu P, Guo H, Hu Y, Chen Y, Xie S, Xi Z, Skipper TN, Russell AG. Significant contrasts in aerosol acidity between China and the United States. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:8341-8356. [PMID: 38106813 PMCID: PMC10723067 DOI: 10.5194/acp-21-8341-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Aerosol acidity governs several key processes in aerosol physics and chemistry, thus affecting aerosol mass and composition and ultimately climate and human health. Previous studies have reported aerosol pH values separately in China and the United States (USA), implying different aerosol acidity between these two countries. However, there is debate about whether mass concentration or chemical composition is the more important driver of differences in aerosol acidity. A full picture of the pH difference and the underlying mechanisms responsible is hindered by the scarcity of simultaneous measurements of particle composition and gaseous species, especially in China. Here we conduct a comprehensive assessment of aerosol acidity in China and the USA using extended ground-level measurements and regional chemical transport model simulations. We show that aerosols in China are significantly less acidic than in the USA, with pH values 1-2 units higher. Based on a proposed multivariable Taylor series method and a series of sensitivity tests, we identify major factors leading to the pH difference. Compared to the USA, China has much higher aerosol mass concentrations (gas + particle, by a factor of 8.4 on average) and a higher fraction of total ammonia (gas + particle) in the aerosol composition. Our assessment shows that the differences in mass concentrations and chemical composition play equally important roles in driving the aerosol pH difference between China and the USA - increasing the aerosol mass concentrations (by a factor of 8.4) but keeping the relative component contributions the same in the USA as the level in China increases the aerosol pH by ~1.0 units and further shifting the chemical composition from US conditions to China's that are richer in ammonia increases the aerosol pH by ~0.9 units. Therefore, China being both more polluted than the USA and richer in ammonia explains the aerosol pH difference. The difference in aerosol acidity highlighted in the present study implies potential differences in formation mechanisms, physicochemical properties, and toxicity of aerosol particles in these two countries.
Collapse
Affiliation(s)
- Bingqing Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Huizhong Shen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Pengfei Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Hongyu Guo
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, USA
| | - Yongtao Hu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Yilin Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shaodong Xie
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing, 100871, China
| | - Ziyan Xi
- College of Environmental Sciences and Engineering, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University, Beijing, 100871, China
| | - T. Nash Skipper
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Armistead G. Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
4
|
The Optical Properties of Aerosols at the Summit of Mount Tai in May and June and the Retrieval of the Complex Refractive Index. ATMOSPHERE 2020. [DOI: 10.3390/atmos11060655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To study the optical properties of background atmospheric aerosols in East China, we carried out observations of the physical, chemical and optical properties of atmospheric aerosols at the summit of Mount Tai (Mt. Tai, 1533.7 m above sea level) from 13 May to 25 June 2017. The results show that the average scattering coefficient ( σ sca , 550 ) at 550 nm of the aerosols at the summit of Mt. Tai is 40.3 Mm−1, and the average absorption coefficient ( σ abs , 550 ) at 550 nm is 16.0 Mm−1. The complex refractive index of aerosols is a key parameter for aerosol retrieval and modeling. There are few studies on the equivalent complex refractive index of aerosol in the Taishan area. We calculated the aerosol equivalent complex refractive index using the observed aerosol scattering coefficients, absorption coefficients and particle size distribution data, providing more data support for future modeling in this region. The real part (n) of the complex refractive index at 550 nm of aerosol ranges from 1.31 to 1.98 (mostly under 1.50), with an average value of 1.38, while the imaginary part (k) ranges from 0.014 to 0.251 (less than 0.10 for over 95% samples), with an average value of 0.040. The analysis of the n and k of the aerosol average complex refractive index shows that the scattering properties of the aerosols at the summit of Mt. Tai are relatively weak and the absorption properties are relatively strong when compared with those of other kinds of aerosols. The k of the aerosol complex refractive index at the summit of Mt. Tai has strong correlations with the wind speed, temperature, as revealed by the correlation analysis.
Collapse
|