1
|
Park ED. Recent Progress on Low-Temperature Selective Catalytic Reduction of NO x with Ammonia. Molecules 2024; 29:4506. [PMID: 39339501 PMCID: PMC11434452 DOI: 10.3390/molecules29184506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) has been implemented in response to the regulation of NOx emissions from stationary and mobile sources above 300 °C. However, the development of NH3-SCR catalysts active at low temperatures below 200 °C is still needed to improve the energy efficiency and to cope with various fuels. In this review article, recent reports on low-temperature NH3-SCR catalysts are systematically summarized. The redox property as well as the surface acidity are two main factors that affect the catalytic activity. The strong redox property is beneficial for the low-temperature NH3-SCR activity but is responsible for N2O formation. The multiple electron transfer system is more plausible for controlling redox properties. H2O and SOx, which are often found with NOx in flue gas, have a detrimental effect on NH3-SCR activity, especially at low temperatures. The competitive adsorption of H2O can be minimized by enhancing the hydrophobic property of the catalyst. Various strategies to improve the resistance to SOx poisoning are also discussed.
Collapse
Affiliation(s)
- Eun Duck Park
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Wan J, Yang H, Shi Y, Liu Y, Zhang J, Zhang J, Wu G, Zhou R. Effect of Cu loading content on the catalytic performance of Cu-USY catalysts for selective catalytic reduction of NO with NH 3. J Environ Sci (China) 2023; 126:445-458. [PMID: 36503771 DOI: 10.1016/j.jes.2022.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 06/17/2023]
Abstract
Series of Cu-USY zeolite catalyst with different Cu loading content were synthesized through simple impregnation method. The obtained catalysts were subjected to selective catalytic reduction of NOx with NH3 (NH3-SCR) performance evaluation, structural/chemical characterizations such as X-ray diffraction (XRD), N2 adsorption/desorption, H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD) as well as detailed in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments including CO adsorption, NH3 adsorption and NO+O2 in situ reactions. Results show that Cu-USY with proper Cu loading (in this work 5Cu-USY with 5 wt.% Cu) could be promising candidates with highly efficient NH3-SCR catalytic performance, relatively low byproduct formation and excellent hydrothermal stability, although its SO2 poisoning tolerability needs alleviation. Further characterizations reveal that such catalytic advantages can be attributed to both active cu species and surface acid centers evolution modulated by Cu loading. On one hand, Cu species in the super cages of zeolites increases with higher Cu content and being more conducive for NH3-SCR reactivity. On the other hand, higher Cu loading leads to depletion of Brønsted acid centers and simultaneous formation of abundant Lewis acid centers, which facilitates NH4NO3 reduction via NH3 adsorbed on Lewis acid centers, thus improving SCR reactivity. However, Cu over-introduction leads to formation of surface highly dispersed CuOx, causing unfavorable NH3 oxidation and inferior N2 selectivity.
Collapse
Affiliation(s)
- Jie Wan
- Energy Research Institute, Nanjing Institute of Technology, Nanjing 211167, China; Institute of Catalysis, Zhejiang University, Hangzhou 310028, China
| | - Haipeng Yang
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, China
| | - Yijun Shi
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, China
| | - Yanjun Liu
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, China
| | - Jin Zhang
- Energy Research Institute, Nanjing Institute of Technology, Nanjing 211167, China
| | - Jun Zhang
- Energy Research Institute, Nanjing Institute of Technology, Nanjing 211167, China
| | - Gongde Wu
- Energy Research Institute, Nanjing Institute of Technology, Nanjing 211167, China
| | - Renxian Zhou
- Institute of Catalysis, Zhejiang University, Hangzhou 310028, China.
| |
Collapse
|
3
|
Li J, Ma S, Ren K, Xu N. Studies on the preparation of fly ash-derived Fe-SSZ-13 catalysts and their performance in the catalytic oxidation of NO by H2O2. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
4
|
Luo J, Xu H, Liang X, Wu S, Liu Z, Tie Y, Li M, Yang D. Research progress on selective catalytic reduction of NOx by NH3 over copper zeolite catalysts at low temperature: reaction mechanism and catalyst deactivation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04938-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
5
|
Qi X, Wang Y, Liu C, Liu Q. The Challenges and Comprehensive Evolution of Cu-Based Zeolite Catalysts for SCR Systems in Diesel Vehicles: A Review. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Li P, Xin Y, Zhang H, Yang F, Tang A, Han D, Jia J, Wang J, Li Z, Zhang Z. Recent progress in performance optimization of Cu-SSZ-13 catalyst for selective catalytic reduction of NO x. Front Chem 2022; 10:1033255. [PMID: 36324517 PMCID: PMC9621587 DOI: 10.3389/fchem.2022.1033255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/28/2022] [Indexed: 11/14/2022] Open
Abstract
Nitrogen oxides (NO x ), which are the major gaseous pollutants emitted by mobile sources, especially diesel engines, contribute to many environmental issues and harm human health. Selective catalytic reduction of NO x with NH3 (NH3-SCR) is proved to be one of the most efficient techniques for reducing NO x emission. Recently, Cu-SSZ-13 catalyst has been recognized as a promising candidate for NH3-SCR catalyst for reducing diesel engine NO x emissions due to its wide active temperature window and excellent hydrothermal stability. Despite being commercialized as an advanced selective catalytic reduction catalyst, Cu-SSZ-13 catalyst still confronts the challenges of low-temperature activity and hydrothermal aging to meet the increasing demands on catalytic performance and lifetime. Therefore, numerous studies have been dedicated to the improvement of NH3-SCR performance for Cu-SSZ-13 catalyst. In this review, the recent progress in NH3-SCR performance optimization of Cu-SSZ-13 catalysts is summarized following three aspects: 1) modifying the Cu active sites; 2) introducing the heteroatoms or metal oxides; 3) regulating the morphology. Meanwhile, future perspectives and opportunities of Cu-SSZ-13 catalysts in reducing diesel engine NO x emissions are discussed.
Collapse
Affiliation(s)
- Pan Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Ying Xin
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Hanxue Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Fuzhen Yang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Ahui Tang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Dongxu Han
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Junxiu Jia
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin, China
| | - Zhaoliang Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, China
| |
Collapse
|
7
|
Controllable synthesis of argentum decorated CuO @CeO2 catalyst and its highly efficient performance for soot oxidation. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
In-situ One-Pot Synthesis of Ti/Cu-SSZ-13 Catalysts with Highly Efficient NH3-SCR Catalytic Performance as Well as Superior H2O/SO2 Tolerability. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Influence of Fe–Cu-SSZ-13 and hybrid Fe–Cu-SSZ-13 zeolite catalyst in ammonia-selective catalytic reduction (NH3-SCR) of NOx. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Wei J, Feng X, Hu X, Yang J, Yang C, Liu B. Cu(II) doped FeOCl as an efficient photo-Fenton catalyst for phenol degradation at mild pH. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|