1
|
Bai Z, Shao J, Xu W, Zhu K, Zhao L, Wang L, Chen J. An unneglected source to ambient brown carbon and VOCs at harbor area: LNG tractor truck. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165575. [PMID: 37499815 DOI: 10.1016/j.scitotenv.2023.165575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The ambient air quality of harbors area in Asia is commonly more polluted compared to other continents. The airborne pollutant is directly or indirectly related to a significant impact of traffic emissions. This study for the first time assessed the impacts on brown carbon (BrC) and volatile organic compounds (VOCs) from in-port liquid natural gas (LNG) tractor truck at harbor areas, via conducting real-time monitoring of VOCs characteristic and sampling for ambient air at a harbor (named as W harbor) in Shanghai, China, collecting emissions of in-port LNG tractor truck and miniCast in laboratory, as well as statistics of external container diesel trucks in the port for further validation. HPLC/DAD/Q-Tof MS was adopted for sample analysis. Results showed that many CHO compounds were associated with vehicle exhausts. Among of them, aliphatic CHO compounds with low degree of unsaturation were identified as fatty acids and fatty acid methyl esters extensively existing in fuel combustion emissions. And non-aliphatic CHO compounds characterized by low O/C ratios (<0.17) identified for the harbor air came from the emissions of in-port LNG power trucks with low-speed driving and idling. The ambient average non-methane total hydrocarbons (NMHC) concentration (0.59 ppm) at W harbor was much greater than that for other areas in Shanghai. The higher ratios of toluene/benzene (3.30) and m/p-xylene/ethylbenzene (3.11) observed at W harbor implied instead of external container diesel trucks, the dominating contributing of internal LNG tractor trucks to ambient VOCs cannot be neglected. This study concluded that LNG is not as clean as it was expected. The LNG-fueled vehicles can produce strong light-absorption chromophores as well as high concentration of VOCs.
Collapse
Affiliation(s)
- Zhe Bai
- School of Ecology and Environment, Inner Mongolia University, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Institute of Eco-Chongming (IEC), Shanghai, China
| | - Jiantao Shao
- China Construction Eighth Engineering Division Corp., Ltd., Shanghai 200112, China
| | - Wei Xu
- Shanghai Jianke Environmental Techonology Co., Ltd, China
| | - Ke Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Institute of Eco-Chongming (IEC), Shanghai, China
| | - Ling Zhao
- School of Ecology and Environment, Inner Mongolia University, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Institute of Eco-Chongming (IEC), Shanghai, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Institute of Eco-Chongming (IEC), Shanghai, China
| |
Collapse
|
2
|
Picó Y, Barceló D. Microplastics and other emerging contaminants in the environment after COVID-19 pandemic: The need of global reconnaissance studies. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 33:100468. [PMID: 37139099 PMCID: PMC10085870 DOI: 10.1016/j.coesh.2023.100468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Evidence of the increase of emerging contaminants in the environment due to the COVID-19 pandemic, such as personal protective equipment (PPE), disinfectants, pharmaceuticals, etc., has enlarged. Here we explain the variety of pathways of these emerging contaminants to enter the environment, including wastewater treatment plants, improper disposal of PPE, and runoff from surfaces treated with disinfectants. We also discuss the current state-of-art of the toxicological implications of these emerging contaminants. Initial research suggests that they may have harmful effects on aquatic organisms and human health. Future directions are suggested as further research is needed to fully understand the impacts of these contaminants on the environment and humans, as well as to develop effective approaches to mitigate their potential negative effects.
Collapse
Affiliation(s)
- Yolanda Picó
- Food and Environmental Research Group (SAMA-UV), Research Desertification Centre (CIDE) (CSIC-University of Valencia-GV), Moncada-Naquera Road, Km 4.5, 46113 Moncada, Valencia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, C/Emili Grahit, 101, Edifici H2O, 17003, Girona, Spain
| |
Collapse
|
3
|
Jiang H, Zhang H, Fu M, Huang Z, Ni H, Yin H, Ding Y. Recent advances and perspectives towards emission inventories of mobile sources: Compilation approaches, data acquisition methods, and case studies. J Environ Sci (China) 2023; 123:460-475. [PMID: 36522006 DOI: 10.1016/j.jes.2022.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 06/17/2023]
Abstract
In recent years, great efforts have been devoted to reducing emissions from mobile sources with the dramatic growth of motor vehicle and nonroad mobile source populations. Compilation of a mobile source emission inventory is conducive to the analysis of pollution emission characteristics and the formulation of emission reduction policies. This study summarizes the latest compilation approaches and data acquisition methods for mobile source emission inventories. For motor vehicles, a high-resolution emission inventory can be developed based on a bottom-up approach with a refined traffic flow model and real-world speed-coupled emission factors. The top-down approach has advantages when dealing with macroscale vehicle emission estimation without substantial traffic flow infrastructure. For nonroad mobile sources, nonroad machinery, inland river ships, locomotives, and civil aviation aircraft, a top-down approach based on fuel consumption or power is adopted. For ocean-going ships, a bottom-up approach based on automatic identification system (AIS) data is adopted. Three typical cases are studied, including emission reduction potential, a cost-benefit model, and marine shipping emission control. Outlooks and suggestions are given on future research directions for emission inventories for mobile sources: building localized emission models and factor databases, improving the dynamic updating capability of emission inventories, establishing a database of emission factors of unconventional pollutants and greenhouse gas from mobile sources, and establishing an urban high temporal-spatial resolution volatile organic compound (VOC) evaporation emission inventory.
Collapse
Affiliation(s)
- Han Jiang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center of Ministry of Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hefeng Zhang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center of Ministry of Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mingliang Fu
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center of Ministry of Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhihui Huang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center of Ministry of Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Ni
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center of Ministry of Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hang Yin
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center of Ministry of Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Ding
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Vehicle Emission Control Center of Ministry of Ecology and Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Zheng F, Zhang H, Yin H, Fu M, Jiang H, Li J, Ding Y. Evaluation of real-world emissions of China V heavy-duty vehicles fueled by diesel, CNG and LNG on various road types. CHEMOSPHERE 2022; 303:135137. [PMID: 35644238 DOI: 10.1016/j.chemosphere.2022.135137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Natural gas has been widely considered as an alternative fuel to diesel on heavy-duty vehicles (HDVs). To evaluate the real-world emissions, 19 diesel HDVs, 3 CNG HDVs and 9 LNG HDVs were tested using portable emission measurement system on urban, suburban and freeway roads . The results show that average emission rates of CO, HC and NOx from diesel, CNG and LNG HDVs tend to rise with the increasing of VSP. Due to different emission control strategies and complicated driving cycle, NOx reduction rates of real-world emission factors are lower than those of the corresponding limits from China II to China V diesel HDVs. CO and NOx emission factors from all tested HDVs on urban road are generally higher than those on suburban road in the same velocity intervals, which means driving behaviors on different road types have great influence on emission factors in the same velocity intervals. NOx emission factors from LNG HDVs are higher than those from diesel HDVs, indicating that using China V LNG HDVs instead of China V diesel HDVs could not be an ideal alternative for freeway transportation. As CO and NOx comprehensive emission factors from China V CNG HDVs are higher than those from China V diesel, even higher than China IV diesel HDVs, China V CNG HDVs are unable to be considered as cleaner vehicles when compared to China V diesel HDVs in the study. It is noticeable that HC emission factors from CNG and LNG HDVs are extremely higher compare with diesel HDVS. NO2 emission factors from LNG HDVs are 2.14-9.19 and 4.74-8.53 times than those from diesel and CNG HDVs with various road types. Our study can provide development road map for different fuel types of HDVs and the reference for new emission legislation of HDVs.
Collapse
Affiliation(s)
- Feng Zheng
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; School of Mechanical and Traffic Engineering, Southwest Forestry University, Kunming, 650224, China; Key Lab of Vehicle Emission and Safety on Plateau Mountain, Yunnan Provincial Department of Education, Kunming, 650224, China
| | - Hefeng Zhang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hang Yin
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mingliang Fu
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Han Jiang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiaqiang Li
- School of Mechanical and Traffic Engineering, Southwest Forestry University, Kunming, 650224, China; Key Lab of Vehicle Emission and Safety on Plateau Mountain, Yunnan Provincial Department of Education, Kunming, 650224, China.
| | - Yan Ding
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Vehicle Emission Control Center, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
5
|
Bulk Co3O4 for Methane Oxidation: Effect of the Synthesis Route on Physico-Chemical Properties and Catalytic Performance. Catalysts 2022. [DOI: 10.3390/catal12010087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The synthesis of bulk pure Co3O4 catalysts by different routes has been examined in order to obtain highly active catalysts for lean methane combustion. Thus, eight synthesis methodologies, which were selected based on their relatively low complexity and easiness for scale-up, were evaluated. The investigated procedures were direct calcination of two different cobalt precursors (cobalt nitrate and cobalt hydroxycarbonate), basic grinding route, two basic precipitation routes with ammonium carbonate and sodium carbonate, precipitation-oxidation, solution combustion synthesis and sol-gel complexation. A commercial Co3O4 was also used as a reference. Among the several examined methodologies, direct calcination of cobalt hydroxycarbonate (HC sample), basic grinding (GB sample) and basic precipitation employing sodium carbonate as the precipitating agent (CC sample) produced bulk catalysts with fairly good textural and structural properties, and remarkable redox properties, which were found to be crucial for their good performance in the oxidation of methane. All catalysts attained full conversion and 100% selectivity towards CO2 formation at a temperature of 600 °C while operating at 60,000 h−1. Among these, the CC catalyst was the only one that achieved a specific reaction rate higher than that of the reference commercial Co3O4 catalyst.
Collapse
|
6
|
Characterization of Exhaust CO, HC and NOx Emissions from Light-Duty Vehicles under Real Driving Conditions. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
On-road exhaust emissions from light-duty vehicles are greatly influenced by driving conditions. In this study, two light-duty passenger cars (LDPCs) and three light-duty diesel trucks (LDDTs) were tested to investigate the on-road emission factors (EFs) with a portable emission measurement system. Emission characteristics of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOx) emitted from vehicles at different speeds, accelerations and vehicle specific power (VSP) were analyzed. The results demonstrated that road conditions have significant impacts on regulated gaseous emissions. CO, NOx, and HC emissions from light-duty vehicles on urban roads increased by 1.1–1.5, 1.2–1.4, and 1.9–2.6 times compared with those on suburban and highway roads, respectively. There was a rough positive relationship between transient CO, NOx, and HC emission rates and vehicle speeds, while the EFs decreased significantly with the speed decrease when speed ≤ 20 km/h. The emissions rates of NOx and HC tended to increase and then decrease as the acceleration increased and the peak occurred at 0 m/s2 without considering idling conditions. For HC and CO, the emission rates were low and changed gently with VSP when VSP < 0, while emission rates increased gradually with the VSP increase when VSP > 0. For NOx NOx emission rates were lower and had no obvious change when VSP < 0. However, NOx emissions were positively correlated with VSP, when VSP > 0.
Collapse
|