1
|
Jin X, Huang Q, Li X, Lu G, Yao Q, Xu F, Guo C, Dang Z. Divergent repartitioning of antimony and arsenic during jarosite transformation: A comparative study under aerobic and anaerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165533. [PMID: 37453703 DOI: 10.1016/j.scitotenv.2023.165533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Jarosite is the host mineral of Sb(V) and As(V) in mining environments. However, the repartitioning of Sb and As during its transformation is poorly understood. Additionally, the mutual effect between the redistribution behavior of As and Sb during jarosite conversion remains unclear. Here, we investigated the transformation of Sb(V)-, As(V)- and Sb(V)-As(V)-jarosite at pH 5.5 under aerobic and anaerobic conditions without a reductant. The results indicated that co-precipitated Sb(V) promotes jarosite dissolution, and the final products were mainly goethite and hematite. In contrast, the co-precipitated As(V) retarded jarosite dissolution and altered the transformation pathway, mainly forming lepidocrocite, which might be attributed to the formation of As-Fe complexes on the jarosite surface. The inhibiting or promoting effect increased with the increase in co-precipitated As or Sb concentration. In the treatment with Sb(V)-As(V)-jarosite, the inhibition effect of co-precipitated As(V) on mineral dissolution was predominant, but the end-products were mainly goethite and hematite. Compared with the aerobic system, the dissolution and transformation of jarosite in treatments in the anaerobic system occurred faster, although without a reductant, which was possibly associated with the reduced CO2 content in the reaction solutions after degassing. In all treatments, the release of Sb(aq) and As(aq) into the solution was negligible during jarosite transformation. The transformation processes drove As into the surface-bound exchangeable and poorly crystalline phases, while Sb was typically redistributed in the poorly crystalline phase. During the transformation of Sb(V)-As(V)-jarosite, the co-existence of As significantly increased the proportion of Sb distributed on the solid surface and in the poorly crystalline phase. These findings are valuable for predicting the long-term fate of Sb and As in mining environments.
Collapse
Affiliation(s)
- Xiaohu Jin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Qi Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaofei Li
- School of Environmental and Chemical Engineering, Foshan University, 528000 Foshan, PR China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Qian Yao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Fengjia Xu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China.
| |
Collapse
|
2
|
Lv Y, Zhang C, Nan C, Fan Z, Huang S. Induced transformation of antimony trioxide by Mn(II) oxidation and their co-transformed mechanism. J Environ Sci (China) 2023; 129:69-78. [PMID: 36804243 DOI: 10.1016/j.jes.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 06/18/2023]
Abstract
Antimony (Sb) is a toxic and carcinogenic element that often enters soil in the form of antimony trioxide (Sb2O3) and coexists with manganese (Mn) in weakly alkaline conditions. Mn oxides such as birnessite have been found to promote the oxidative dissolution of Sb2O3, but few researches concerned the co-transformations of Sb2O3 and Mn(II) in environment. This study investigated the mutual effect of abiotic oxidation of Mn(II) and the coupled oxidative dissolution of Sb2O3. The influencing factors, such as Mn(II) concentrations, pH and oxygen were also discussed. Furthermore, their co-transformed mechanism was also explored based on the analysis of Mn(II) oxidation products with or without Sb2O3 using XRD, SEM and XPS. The results showed that the oxidative dissolution of Sb2O3 was enhanced under higher pH and higher Mn(II) loadings. With a lower Mn(II) concentration such as 0.01 mmol/L Mn(II) at pH 9.0, the improved dissolution of Sb2O3 was attributed to the generation of dissolved intermediate Mn(III) species with strong oxidation capacity. However, under higher Mn(II) concentrations, both amorphous Mn(III) oxides and intermediate Mn(III) species were responsible for promoting the oxidative dissolution of Sb2O3. Most released Sb (∼72%) was immobilized by Mn oxides and Sb(V) was dominant in the adsorbed and dissolved total Sb. Meanwhile, the presence of Sb2O3 not only inhibited the removal of Mn(II) by reducing Mn(III) to Mn(II) but also affected the final products of Mn oxides. For example, amorphous Mn oxides were formed instead of crystalline Mn(III) oxides, such as MnOOH. Furthermore, rhodochrosite (MnCO3) was formed with the high Mn(II)/Sb2O3 ratio, but without being observed in the low Mn(II)/Sb2O3 ratio. The results of study could help provide more understanding about the fate of Sb in the environment and the redox transformation of Mn.
Collapse
Affiliation(s)
- You Lv
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Caixiang Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan 430074, China.
| | - Chao Nan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Zenghui Fan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shuxin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Yu W, Cao Y, Yan S, Guo H. New insights into arsenate removal during siderite oxidation by dissolved oxygen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163556. [PMID: 37080317 DOI: 10.1016/j.scitotenv.2023.163556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/20/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Nowadays, arsenic (As) pollution in aquatic environments severely threatens the health of human beings. Although it has been known that siderite is capable of As adsorption and dissolved oxygen (DO) enhances the adsorption, effects of DO concentrations on As(V) adsorption onto siderite remain elusive. In this study, As(V) removal was investigated by synthesized siderite from aqueous solutions with different DO concentrations. Arsenic(V) adsorption kinetics were conformed to the pseudo-second-order model. As(V) adsorption onto siderite was enhanced in the presence of dissolved oxygen, but the excess DO concentration did not increase As(V) adsorption since Fe(III) oxides were coated onto the pristine siderite surface, preventing the mineral from further oxidation. With the increase in DO concentration, the rate of Fe(II) oxidation decreased, which was the kinetic-limited step during As(V) removal by siderite with the presence of DO. The theoretically generated Fe(III) was stoichiometrically proportional to the consumed oxygen. Microscopic characteristics by means of XRD, SEM, TEM, FTIR and XPS indicated that the adsorption was dominated by the chemical process via the As(V) complexation with siderite and co-precipitation with produced Fe(III) oxides. This study reveals the mechanisms of As(V) adsorption during siderite oxidation under different DO concentrations and emphasizes the importance of siderite oxidation in As(V) fate in aqueous systems.
Collapse
Affiliation(s)
- Wenting Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Yuanyuan Cao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Song Yan
- Beijing Water Business Doctor Co., LTD., Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, PR China; Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| |
Collapse
|
4
|
Enhancement Mechanism of Stibnite Dissolution Mediated by Acidithiobacillus ferrooxidans under Extremely Acidic Condition. Int J Mol Sci 2022; 23:ijms23073580. [PMID: 35408938 PMCID: PMC8998812 DOI: 10.3390/ijms23073580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 01/25/2023] Open
Abstract
Oxidative dissolution of stibnite (Sb2S3), one of the most prevalent geochemical processes for antimony (Sb) release, can be promoted by Sb-oxidizing microbes, which were studied under alkaline and neutral conditions but rarely under acidic conditions. This work is dedicated to unraveling the enhancement mechanism of stibnite dissolution by typical acidophile Acidithiobacillus ferrooxidans under extremely acidic conditions. The results of solution behavior showed that the dissolution of Sb2S3 was significantly enhanced by A. ferrooxidans, with lower pH and higher redox potential values and higher [Sb(III)] and [Sb(V)] than the sterile control. The surface morphology results showed that the cells adsorbed onto the mineral surface and formed biofilms. Much more filamentous secondary minerals were formed for the case with A. ferrooxidans. Further mineral phase compositions and Sb/S speciation transformation analyses showed that more secondary products Sb2O3/SbO2-, Sb2O5/SbO3-, SO42-, as well as intermediates, such as S0, S2O32- were formed for the biotic case, indicating that the dissolution of Sb2S3 and the Sb/S speciation transformation was promoted by A. ferrooxidans. These results were further clarified by the comparative transcriptome analysis. This work demonstrated that through the interaction with Sb2S3, A. ferrooxidans promotes S/Sb oxidation, so as to enhance S/Sb transformation and thus the dissolution of Sb2S3.
Collapse
|
5
|
Zhong D, He F, Ma W, Wu Y, Dong J. Heterogeneous activation of H 2O 2/Na 2S 2O 8 with iron ore from water distribution networks for pollutant removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:1813-1823. [PMID: 35358073 DOI: 10.2166/wst.2022.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, we investigated using the main composition of pipe deposits from water distribution networks as catalyst to activate dual-oxidant H2O2/Na2S2O8 system to produce radicals for perchloroethylene and chloramphenicol removal. According to the results, the degradation efficiency of perchloroethylene by H2O2/Na2S2O8 system was 92.05% within 8 h. Due to the slow conversion between ≡Fe3+ and ≡Fe2+, the hydroxylamine was introduced to reduce reaction time. As for the results, the degradation efficiency of chloramphenicol in the H2O2/Na2S2O8 system with hydroxylamine assistance was 73.31% within 100 min. Meanwhile, several key affecting factors and the kinetic models were investigated. The primary radicals were identified by electron paramagnetic resonance and radical scavenging tests. Eleven degradation products were confirmed by high-resolution liquid chromatography-mass spectrometry. The result of this study provided the theoretical basis for resource utilization of pipe deposits in water treatment in case of emerging contamination events.
Collapse
Affiliation(s)
- Dan Zhong
- School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China E-mail: ; These authors contributed equally to this paper
| | - Fu He
- School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China E-mail: ; These authors contributed equally to this paper
| | - Wencheng Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China E-mail:
| | - Yichuan Wu
- School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China E-mail:
| | - Jiaju Dong
- Shenzhen New Land Tool Planning & Architectural Design Co., Ltd., P.R. China
| |
Collapse
|