1
|
Liu C, Yan X, Zhang HX, Yang JM, Yoon KB. Silicone-modified black peanut shell (BPS) biochar adsorbents: Preparation and their adsorptions for copper(II) from water. Heliyon 2024; 10:e35169. [PMID: 39166084 PMCID: PMC11334888 DOI: 10.1016/j.heliyon.2024.e35169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Novel silicone-modified biochar adsorbents (BPS-MBCs) were prepared by utilizing waste black peanut shell (BPS) as a raw biochar and gamma-amino-propyl triethoxysilane (silicone) as an inorganic modifier. The novelty of this work is that the incorporation of silicone into BPS can rise the specific surface area and porosity of BPS-MBCs and elevate their adsorptions for copper (II). Sorption kinetics data for copper (II) were molded using five kinetic equations [i.e. Lagergren 1st-order and 2nd-order, intraparticle diffusion (IN-D), Elovich, and Diffusion-chemisorption]. The equilibrium adsorption data for copper (II) were analyzed using two-parameter isotherm equations [i.e. Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin] and three-parameter Sips, Redlich-Peterson and Toth isotherm models. It was validated that copper (II) sorption on BPS-MBCs matched better with pseudo-2nd-order kinetic, Diffusion-chemisorption and Langmuir isotherm models. The maximal qmLan of BPS-MBC-400 was near 284 mg/g at 45 °C. By multi-phase fitting of IN-D modelling, intra-particle diffusion coefficient (kin-d) and diffusion coefficient of external mass-transfer (DEx-Di) for copper (II) were calculated. The low sorption energy from Temkin and mean free energy from D-R modellings implied that copper (II) sorption was initiated by weak non-covalent bond interactions. Thermodynamic parameters indicated that copper (II) on BPS-MBCs was an endothermic and spontaneous process. Recycling of BPS-MBC-400 for copper (II) suggested it has excellent reusability. The major mechanism of copper (II) on BPS-MBCs is possibly comprised of multiple processes, such as physical adsorption (electrostatic attraction), chemical adsorption (adsorption from functional groups, chelation, and ion exchange) and diffusion-chemisorption. Based on these findings, it is expects that BPS-MBCs are promising sorbents for copper (II) eradication from Cu(II)-including wastewater.
Collapse
Affiliation(s)
- Chen Liu
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - He-Xin Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Jian-ming Yang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Keun-Byoung Yoon
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
2
|
Deng Y, Che Q, Li Y, Luo J, Gao X, He Y, Liu Y, Liu T, Zhao X, Hu X, Zhao W. Non-radical activation of persulfate with Bi 2O 3/BiO 1.3I 0.4 for efficient degradation of propranolol under visible light. J Environ Sci (China) 2024; 142:57-68. [PMID: 38527896 DOI: 10.1016/j.jes.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 03/27/2024]
Abstract
Non-radical activation of persulfate (PS) by photocatalysts is an effective approach for removing organic pollutants from aqueous environments. In this study, a novel Bi2O3/BiO1.3I0.4 heterojunction was synthesized using a facile solvothermal approach and used for the first time for non-radical activation of PS to degrade propranolol (PRO) in the presence of visible light. The findings found that the degradation rate of PRO in the Bi2O3/BiO1.3I0.4/PS system was significantly increased from 19% to more than 90% within 90 min compared to the Bi2O3/BiO1.3I0.4 system. This indicated that the composite system exerted an excellent synergistic effect between the photocatalyst and the persulfate-based oxygenation. Quenching tests and electron paramagnetic resonance demonstrated that the non-radical pathway with singlet oxygen as the active species played a major role in the photocatalytic process. The existence of photo-generated holes during the reaction could also be directly involved in the oxidation of pollutants. Meanwhile, a possible PRO degradation pathway was also proposed. Furthermore, the impacts of pH, humic acid and common anions on the PRO degradation by the Bi2O3/BiO1.3I0.4/PS were explored, and the system's stability and reusability were also studied. This study exhibits a highly productive catalyst for PS activation via a non-radical pathway and provides a new idea for the degradation of PRO.
Collapse
Affiliation(s)
- Yuehua Deng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Qianqian Che
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yani Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiating Luo
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yiling Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tong Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiaolong Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xiaobin Hu
- School of Life Science, Huzhou University, Huzhou 313000, China
| | - Wei Zhao
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| |
Collapse
|
3
|
Zhou T, Shi C, Wang Y, Wang X, Lei Z, Liu X, Wu J, Luo F, Wang L. Progress of metal-loaded biochar-activated persulfate for degradation of emerging organic contaminants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:824-843. [PMID: 39141037 DOI: 10.2166/wst.2024.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
In recent years, studies on the degradation of emerging organic contaminants by sulfate radical (SO4-·) based advanced oxidation processes (SR-AOPs) have triggered increasing attention. Metal-loaded biochar (Me-BC) can effectively prevent the agglomeration and leaching of transition metals, and its good physicochemical properties and abundant active sites induce outstanding in activating persulfate (PS) for pollutant degradation, which is of great significance in the field of advanced oxidation. In this paper, we reviewed the preparation method and stability of Me-BC, the effect of metal loading on the physicochemical properties of biochar, the pathways of pollutant degradation by Me-BC-activated PS (including free radical pathways: SO4-·, hydroxyl radical (·OH), superoxide radicals (O2-·); non-free radical pathways: singlet oxygen (1O2), direct electron transfer), and discussed the activation of different active sites (including metal ions, persistent free radicals, oxygen-containing functional groups, defective structures, etc.) in the SR-AOPs system. Finally, the prospect was presented for the current research progress of Me-BC in SR-AOPs technology.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Chao Shi
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, China E-mail:
| | - Yangyang Wang
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, China; School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Xiaoshu Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Zhenle Lei
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xunjie Liu
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Jinyu Wu
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Fengxiang Luo
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Lei Wang
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, China; School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
4
|
Aslam A, Batool F, Noreen S, Abdelrahman EA, Mustaqeem M, Albalawi BFA, Ditta A. Metal Oxide-Impregnated Biochar for Azo Dye Remediation as Revealed through Kinetics, Thermodynamics, and Response Surface Methodology. ACS OMEGA 2024; 9:4300-4316. [PMID: 38313481 PMCID: PMC10832006 DOI: 10.1021/acsomega.3c05321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024]
Abstract
This study reports for the first time the adsorption capacity of a novel adsorbent Croton bonplandianus Baill. biochar. Its adsorption capacity was further enhanced by loading magnetic composites on it, which makes it an efficient medium for the adsorption of dyes. Two azo dyes, Basic Brown 1 (BB1) and Basic Orange 2 (BO2), were studied for their effective adsorption from aqueous media. A comprehensive characterization was performed by using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to study the properties of Fe2O3-loaded C. bonplandianus Baill. biochar (FO-CBPBB). A series of batch experiments were conducted to optimize various parameters (pH, contact time, adsorbent amount, initial BB1 and BO2 concentrations, and temperature) for the maximum adsorption of BB1 and BO2 on the FO-CBPBB adsorbent. The percentage of BB1 and BO2 dyes that adsorb to FO-CBPBB under the best experimental circumstances (pH of solution 7, contact time 80 min, temperature of solution 40 °C, initial BB1 and BO2 dye concentrations 80 mg L-1, and adsorbent dose 1 g L-1) was 93 and 95%, respectively. The best adsorption of BB1 and BO2 was accomplished by optimizing the effects of several factors, including the starting dye concentration, contact time, and temperature, based on the central composite design. The Freundlich and Langmuir isotherm models were used to examine the equilibrium data. The Langmuir isotherm with the greatest adsorption capacity and R2 value effectively captured the experimental results. When kinetic parameters were investigated, it was found that pseudo-second-order was appropriate, reflecting the fact that the dye-adsorbent interaction was the rate-controlling factor in this study. The sorption process was endothermic and spontaneous, as shown by the thermodynamic variables. Based on the interaction between the adsorbent and azo dyes, it was concluded that the adsorption process was electrostatic in nature. Adsorbents that have been synthesized can effectively remove azo dyes from wastewater. Excellent regeneration efficiency was exhibited by FO-CBPBB, which makes it an eco-friendly and cost-effective alternative to other costly techniques applied for water purification.
Collapse
Affiliation(s)
- Adeel Aslam
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Fozia Batool
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Sobia Noreen
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Ehab A. Abdelrahman
- Department
of Chemistry, College of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Chemistry
Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Muhammad Mustaqeem
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Allah Ditta
- Department
of Environmental Sciences, Shaheed Benazir
Bhutto University Sheringal, Upper Dir 18000, Pakistan
- School of
Biological Sciences, The University of Western
Australia, 35 Stirling
Highway, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Xu J, Tian X, Huang W, Ke L, Fan L, Zhang Q, Cui X, Wu Q, Zeng Y, Cobb K, Liu Y, Ruan R, Wang Y. Production of C 5-C 12 olefins by catalytic pyrolysis of low-density polyethylene with MCM-41 in CO 2/N 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165597. [PMID: 37467986 DOI: 10.1016/j.scitotenv.2023.165597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
The current high volume of plastic waste, but low recycling rate, has led to environmental pollution and wasted energy. Greenhouse gas CO2 can facilitate thermal cracking to dehydrogenate waste plastics, and has potential value for producing olefins. In this work, the pyrolysis properties of low-density polyethylene (LDPE) were studied by thermogravimetric analysis and Py-GC/MS. The effect of the pyrolysis atmosphere, using N2 or CO2, with various MCM-41 catalyst ratios on pyrolysis product distribution, were investigated. The experimental results show that the olefin selectivity under a N2 atmosphere was from 30.32 % to 44.66 % which increased as the MCM-41 catalyst was increased. Under a CO2 atmosphere, the olefin selectivity reached a maximum of 60.39 %. The Boudouard reaction was also enhanced by the introduction of CO2. The carbon content of the subdivided olefins showed that in CO2, the promotion of C5-C12 olefins was relatively weak when non-catalyzed or at low catalytic ratios, but increased significantly at higher MCM-41 catalyst ratios. With a ratio of LDPE: MCM-41 = 5:4, the CO2 atmosphere showed the greatest promotion of C5-C12 olefins over N2, with an increase of 14.66 % compared to N2, representing a 48.54 % yield of the liquid product. Producing C5-C12 olefins under these conditions maximized energy efficiency. These results show that catalytic pyrolysis of LDPE under a CO2 atmosphere has great potential to produce C5-C12 olefins, which can be used to produce high-value chemicals such as naphtha and gasoline. This opens new opportunities for the chemical recycling of plastic waste.
Collapse
Affiliation(s)
- Jiamin Xu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiaojie Tian
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Wanhao Huang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Linyao Ke
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Liangliang Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment Nanchang University, Nanchang 330031, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qiuhao Wu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuan Zeng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Kirk Cobb
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
6
|
Ramakrishnan RK, Venkateshaiah A, Grübel K, Kudlek E, Silvestri D, Padil VVT, Ghanbari F, Černík M, Wacławek S. UV-activated persulfates oxidation of anthraquinone dye: Kinetics and ecotoxicological assessment. ENVIRONMENTAL RESEARCH 2023; 229:115910. [PMID: 37062479 DOI: 10.1016/j.envres.2023.115910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/11/2023] [Accepted: 04/13/2023] [Indexed: 05/21/2023]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOPs) are gaining popularity as a feasible alternative for removing recalcitrant pollutants in an aqueous environment. Persulfates, namely peroxydisulfate (PDS) and peroxymonosulfate (PMS) are the most common sulfate radical donors. Persulfates activation by ultraviolet (UV) irradiation is considered feasible due to the high concentration of radicals produced as well as the lack of catalysts leaching. The research focuses on determining the impact of activated PDS and PMS on the degradation of anthraquinone dye, i.e., Acid Blue 129 (AB129). UV-activated PDS and PMS can quickly degrade the AB129 as well as restrict the formation of by-products. This could explain the reduced ecotoxicity levels of the treated water after degradation, using an aquatic plant (Lemna minor) and a crustacean (Daphnia magna). This, on the other hand, can ensure that the sulfate radical-based processes can be an environmentally friendly technology.
Collapse
Affiliation(s)
- Rohith K Ramakrishnan
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117, Liberec 1, Czech Republic
| | - Abhilash Venkateshaiah
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117, Liberec 1, Czech Republic
| | - Klaudiusz Grübel
- Department of Environmental Protection and Engineering, University of Bielsko-Biala, Willowa 2, 43-309, Bielsko-Biala, Poland
| | - Edyta Kudlek
- Department of Water and Wastewater Engineering, Silesian University of Technology, Konarskiego 18, 44-100, Gliwice, Poland
| | - Daniele Silvestri
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117, Liberec 1, Czech Republic.
| | - Vinod V T Padil
- Amrita School for Sustainable Development (AST), Amrita Vishwa Vidyapeetham, Amrita University, Amritapuri Campus, Amritapuri, Clappana P. O., Kollam, 690525, Kerala, India
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117, Liberec 1, Czech Republic
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117, Liberec 1, Czech Republic.
| |
Collapse
|
7
|
Wang H, Wu Y, Wen Y, Chen D, Pu J, Ding Y, Kong S, Wang S, Xu R. Simultaneously Cationic and Anionic Dyes Elimination via Magnetic Hydrochar Prepared from Copper Slag and Pinewood Sawdust. TOXICS 2023; 11:484. [PMID: 37368584 DOI: 10.3390/toxics11060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023]
Abstract
In practical wastewater, cationic and anionic dyes usually coexist, while synergistic removal of these pollutants is difficult due to their relatively opposite properties. In this work, copper slag (CS) modified hydrochar (CSHC) was designed as functional material by the one-pot method. Based on characterizations, the Fe species in CS can be converted to zero-valent iron and loaded onto a hydrochar substrate. The CSHC exhibited efficient removal rates for both cationic dyes (methylene blue, MB) and anionic dyes (methyl orange, MO), with a maximum capacity of 278.21 and 357.02 mg·g-1, respectively, which was significantly higher than that of unmodified ones. The surface interactions of MB and MO between CSHC were mimicked by the Langmuir model and the pseudo-second-order model. In addition, the magnetic properties of CSHC were also observed, and the good magnetic properties enabled the adsorbent to be quickly separated from the solution with the help of magnets. The adsorption mechanisms include pore filling, complexation, precipitation, and electrostatic attraction. Moreover, the recycling experiments demonstrated the potential regenerative performance of CSHC. All these results shed light on the co-removal of cationic and anionic contaminates via these industrial by-products derived from environmental remediation materials.
Collapse
Affiliation(s)
- Huabin Wang
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Yi Wu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Yi Wen
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Dingxiang Chen
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| | - Jiang Pu
- Shiping Center for Rural Energy and Environment, Honghe 661400, China
| | - Yu Ding
- Baoshan City Longyang Rural Energy Workstation, Baoshan 678000, China
| | - Sailian Kong
- Development Center for Rural Affairs of Jiangchuan District, Yuxi 651100, China
| | - Shuaibing Wang
- College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Rui Xu
- School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
8
|
Gu Y, Yuan L, Li M, Wang X, Rao D, Bai X, Shi K, Xu H, Hou S, Yao H. Co-immobilized bienzyme of horseradish peroxidase and glucose oxidase on dopamine-modified cellulose-chitosan composite beads as a high-efficiency biocatalyst for degradation of acridine. RSC Adv 2022; 12:23006-23016. [PMID: 36105961 PMCID: PMC9379555 DOI: 10.1039/d2ra04091c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Co-immobilized bienzyme biocatalysts are attracting increasing interest in the field of wastewater treatment due to their widespread application. In this study, we successfully prepared a co-immobilized bienzyme biocatalyst by immobilizing horseradish peroxidase (HRP) and glucose oxidase (GOD) on dopamine (DA) modified cellulose (Ce)-chitosan (Cs) composite beads via covalent binding, designated as Ce-Cs@DA/HRP-GOD beads, and found that the bienzyme biocatalyst had a good ability to catalytically degrade acridine in wastewater. SEM, EPR, FTIR, and XRD were used to characterise the structure and properties of the Ce-Cs@DA/HRP-GOD beads. The co-immobilized bienzyme biocatalyst with a small amount of HRP exhibited better degradation efficiency for acridine (99.5%, 8 h) in simulated wastewater compared to the Ce-Cs@DA/HRP (93.8%, 8 h) and Ce-Cs@DA/GOD (15.8%, 8 h) beads alone. In addition, a reusability study showed that the co-immobilized bienzyme biocatalyst maintained a degradation rate of 61.2% after six cycles of acridine degradation. The good biodegradability and reusability of the biocatalyst might be due to the synergistic effect of bienzyme HRP-GOD, including the strong covalent bonding. Accordingly, the co-immobilized bienzyme biocatalyst based on the cascade reaction may pave the way for efficient and eco-friendly treatment of industrial wastewater.
Collapse
Affiliation(s)
- Yaohua Gu
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical University Yinchuan 750004 P. R. China +86-951-698-0689
| | - Lin Yuan
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical University Yinchuan 750004 P. R. China +86-951-698-0689
| | - Mingming Li
- Urology Surgery, General Hospital of Ningxia Medical University Yinchuan 750004 P. R. China
| | - Xinyu Wang
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical University Yinchuan 750004 P. R. China +86-951-698-0689
| | - Deyu Rao
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical University Yinchuan 750004 P. R. China +86-951-698-0689
| | - Xiaoyan Bai
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical University Yinchuan 750004 P. R. China +86-951-698-0689
| | - Keren Shi
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University Yinchuan 750021 P. R. China
| | - Haiming Xu
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical University Yinchuan 750004 P. R. China +86-951-698-0689
| | - Shaozhang Hou
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical University Yinchuan 750004 P. R. China +86-951-698-0689
| | - Huiqin Yao
- Key Laboratory of Environmental Factors and Chronic Disease Control, College of Public Health and Management, School of Basic Medicine, Ningxia Medical University Yinchuan 750004 P. R. China +86-951-698-0689
| |
Collapse
|