1
|
Liu C, Ju W, Wang Y, Dong S, Li X, Fan X, Wang S. Magnetic field-assisted adsorption of phosphate on biochar loading amorphous Zr-Ce (carbonate) oxide composite. ENVIRONMENTAL RESEARCH 2024; 252:119058. [PMID: 38704015 DOI: 10.1016/j.envres.2024.119058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
For metal-based phosphate adsorbents, the dispersity and utilization of surface metal active sites are crucial factors in their adsorption performance and synthesis cost. In this study, a biochar material modified with amorphous Zr-Ce (carbonate) oxides (BZCCO-13) was synthesized for the phosphate uptake, and the adsorption process was enhanced by magnetic field. The beside-magnetic field was shown to have a better influence than under-magnetic field on adsorption, with maximum adsorption capacities (123.67 mg P/g) 1.14-fold greater than that without magnetic field. The beside-magnetic field could also accelerate the adsorption rate, and the time to reach 90% maximum adsorption capacity decreased by 83%. BZCCO-13 has a wide range of application pHs from 5.0 to 10.0, with great selectivity and reusability. The results of XPS and ELNES showed that the "magnetophoresis" of Ce3+ under the magnetic field was the main reason for the enhanced adsorption performance. In addition, increased surface roughness, pore size and oxygen vacancies, enhanced mass transfer by Lorentz force under a magnetic field, all beneficially influenced the adsorption process. The mechanism of phosphate adsorption by BZCCO-13 could be attributed to electrostatic attraction and CO32-dominated ligand exchange. This study not only provided an effective strategy for designing highly effective phosphate adsorbents, but also provides a new light on the application of rare earth metal-based adsorbent in magnetic field.
Collapse
Affiliation(s)
- Chenyang Liu
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China; Department of Environmental Technology, The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources of the People's Republic of China, Tianjin, 300192, China
| | - Wei Ju
- Beijing Forestry University Science Co., Ltd, Beijing, 100085, China
| | - Yili Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China.
| | - Shuoxun Dong
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China
| | - Xiaolin Li
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyang Fan
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| | - Siying Wang
- College of Environmental Science and Engineering, Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
2
|
Hu Q, Pang S, Li Y, Huang L, Zhang Y, Xu X, Pei X. Enhanced removal of phosphate from aqueous solutions by oxygen vacancy-rich MgO microspheres: Performance and mechanism. CHEMOSPHERE 2024; 355:141776. [PMID: 38522667 DOI: 10.1016/j.chemosphere.2024.141776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The efficient removal of phosphate from water environments was extremely significant to control eutrophication of water bodies and prevent further deterioration of water quality. In this study, oxygen vacancy-rich magnesium oxide (OV-MgO) microspheres were synthesized by a simple solvothermal method coupling high-temperature calcination. The effects of adsorbent dosage, contact time, initial pH and coexisting components on phosphate adsorption performance were examined. The physicochemical properties of OV-MgO microspheres and the phosphate removal mechanisms were analyzed by various characterization techniques. The maximum adsorption capacity predicted by the Sips isotherm model was 379.7 mg P/g for OV-MgO microspheres. The phosphate adsorption in this study had a fast adsorption kinetics and a high selectivity. OV-MgO microspheres had a good acid resistance for phosphate adsorption, but their adsorption capacity decreased under alkaline conditions. The electrostatic attraction, ligand exchange, surface precipitation, inner-sphere surface complexation and oxygen vacancy capture were mainly responsible for efficient removal of phosphate from aqueous solutions. This study probably promoted the development of oxygen vacancy-rich metal (hydr)oxides with potential application prospects.
Collapse
Affiliation(s)
- Qili Hu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China.
| | - Shuyue Pang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yixi Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Leyi Huang
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yunhui Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xiaojun Xu
- Sichuan Communication Surveying & Design Institute CO., LTD, Chengdu, 610017, China
| | - Xiangjun Pei
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, China.
| |
Collapse
|
3
|
He Q, Zhao H, Teng Z, Guo Y, Ji X, Hu W, Li M. Tuning microscopic structure of La-MOFs via ligand engineering effect towards enhancing phosphate adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120149. [PMID: 38278114 DOI: 10.1016/j.jenvman.2024.120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
The selection of different organic ligands when synthesizing metal organic framework (MOFs) can change their effects on the adsorption performance. Here, four La-MOFs adsorbents (La-SA, La-FA, La-TA and La-OA) with different organic ligands and structures were synthesized by solvothermal method for phosphate adsorption, and the relationship between their adsorption properties and structures was established. Among four La-MOFs, their phosphate adsorption capacities and adsorption rates followed La-SA > La-FA > La-TA > La-OA. The results indicated that average pore diameter played a key role in phosphate adsorption and there was a positive correlation between average pore diameter and adsorption capacity (R2 = 0.86). Coexisting ion experiments showed that phosphate adsorptions on three La-MOFs (La-SA, La-FA and La-TA) were inhibited in the presence of CO32- and HCO3-. The inhibition of CO32- was the most pronounced and the results of redundancy analysis pointed out that it was mainly due to the change of pH value. In contrast, La-OA showed enhanced phosphate adsorption in the presence of CO32- and HCO3-, and the combination of pH experiments showed that phosphate adsorption by La-OA was increased under alkaline conditions. Further combined with FT-IR, XRD, high resolution energy spectra of XPS (La 3d, P 2p and O 1s) and XANES, the adsorption mechanisms were derived electrostatic attraction, chemical precipitation and inner sphere complexation, and the last two were identified as the main mechanisms. Moreover, it can be identified from XPS 2p that the phosphate adsorption on La-FA and La-OA were mainly in the LaPO4 state, while La-SA and La-TA mainly existed in the form of LaPO4·xH2O crystals and inner sphere complexes. From the perspective of material morphology, this work provides a thought for the rational design of MOFs with adjustable properties for phosphate adsorption.
Collapse
Affiliation(s)
- Qinqin He
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongjun Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zedong Teng
- Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Lu Y, Jin X, Li X, Liu M, Liu B, Zeng X, Chen J, Liu Z, Yu S, Xu Y. Controllable Preparation of Superparamagnetic Fe 3O 4@La(OH) 3 Inorganic Polymer for Rapid Adsorption and Separation of Phosphate. Polymers (Basel) 2023; 15:polym15010248. [PMID: 36616595 PMCID: PMC9824844 DOI: 10.3390/polym15010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Superparamagnetic Fe3O4 particles have been synthesized by solvothermal method, and a layer of dense silica sol polymer is coated on the surface prepared by sol-gel technique; then La(OH)3 covered the surface of silica sol polymer in an irregular shape by controlled in situ growth technology. These magnetic materials are characterized by TEM, FT-IR, XRD, SEM, EDS and VSM; the results show that La(OH)3 nanoparticles have successfully modified on Fe3O4 surface. The prepared Fe3O4@La(OH)3 inorganic polymer has been used as adsorbent to remove phosphate efficiently. The effects of solution pH, adsorbent dosage and co-existing ions on phosphate removal are investigated. Moreover, the adsorption kinetic equation and isothermal model are used to describe the adsorption performance of Fe3O4@La(OH)3. It was observed that Fe3O4@La(OH)3 exhibits a fast equilibrium time of 20 min, high phosphate removal rate (>95.7%), high sorption capacity of 63.72 mgP/g, excellent selectivity for phosphate in the presence of competing ions, under the conditions of phosphate concentration 30 mgP/L, pH = 7, adsorbent dose 0.6 g/L and room temperature. The phosphate adsorption process by Fe3O4@La(OH)3 is best described by the pseudo-second-order equation and Langmuir isotherm model. Furthermore, the real samples and reusability experiment indicate that Fe3O4@La(OH)3 could be regenerated after desorption, and 92.78% phosphate removing remained after five cycles. Therefore, La(OH)3 nanoparticles deposited on the surface of monodisperse Fe3O4 microspheres have been synthesized for the first time by a controlled in-situ growth method. Experiments have proved that Fe3O4@La(OH)3 particles with fast separability, large adsorption capacity and easy reusability can be used as a promising material in the treatment of phosphate wastewater or organic pollutants containing phosphoric acid functional group.
Collapse
Affiliation(s)
- Yao Lu
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
| | - Xuna Jin
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
| | - Xiang Li
- Jilin Institute of Chemical Technology, School of Petrochemical Technology, Jilin 132022, China
| | - Minpeng Liu
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
| | - Baolei Liu
- Jilin Institute of Chemical Technology, School of Petrochemical Technology, Jilin 132022, China
| | - Xiaodan Zeng
- Jilin Institute of Chemical Technology, Centre of Analysis and Measurement, Jilin 132022, China
| | - Jie Chen
- Jilin Institute of Chemical Technology, Centre of Analysis and Measurement, Jilin 132022, China
| | - Zhigang Liu
- Jilin Institute of Chemical Technology, Centre of Analysis and Measurement, Jilin 132022, China
- Correspondence: (Z.L.); (S.Y.)
| | - Shihua Yu
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
- Correspondence: (Z.L.); (S.Y.)
| | - Yucheng Xu
- Railway Transportation Department, Jilin Petrochemical Company, Jilin 132021, China
| |
Collapse
|
5
|
Gao W, Li Z, Yin S, Zhang M, Liu X, Liu Y. Phosphate removal from aqueous solutions with a zirconium-loaded magnetic biochar composite: performance, recyclability, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1938-1948. [PMID: 35927400 DOI: 10.1007/s11356-022-22354-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Phosphate (P) removal is significant for water pollution control. In this paper, a novel penicillin biochar modified with zirconium (ZMBC) was synthesized and used to adsorb P in water. The results showed that ZMBC had a porous structure and magnetic properties, and the zirconium (Zr) was mainly present in the form of an amorphous oxide. P adsorption displayed strong pH dependence. The Freundlich model described the adsorption process well, and the saturated adsorption capacity was 27.97 mg/g (25 ℃, pH = 7). The adsorption kinetics were consistent with the pseudo-second-order model, and the adsorption rates were jointly controlled by the surface adsorption stage and intraparticle diffusion stage. Coexisting anion experiments showed that CO32- inhibited P adsorption, reducing the adsorption capacity by 62.63%. The adsorbed P was easily desorbed by washing with a 1 M NaOH solution, and after 5 cycles, the adsorbent had almost the same capacity. The mechanism for P adsorption was inner-sphere complexation and electrostatic adsorption.
Collapse
Affiliation(s)
- Wei Gao
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
| | - Zaixing Li
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Sijie Yin
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Miaoyu Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Xiaoshuai Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yanfang Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China.
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
| |
Collapse
|
6
|
Photocatalytic Degradation of Methylene Blue and Ortho-Toluidine Blue: Activity of Lanthanum Composites LaxMOy (M: Fe, Co, Ni). Catalysts 2022. [DOI: 10.3390/catal12111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lanthanum (La) nanocomposites LaFeO3, LaNiO3, and LaCoO3 were synthesized using a sol-gel method, and different La to-metal (Fe, Ni, or Co) ratios were attained using various concentrations of salts. The resulting composites were calcined at 540 °C and characterized by XRD, SEM-EDX, FT-IR spectroscopy, XPS, thermogravimetric analysis (TGA), and PL spectroscopy. The activity of the lanthanum composites (LaFeO3, LaNiO3, and LaCoO3) was studied using the photocatalytic degradation of methylene blue (MB) and ortho-toluidine blue (o-TB) under visible light with a wavelength below 420 nm. The change in the concentration of dyes was monitored by using the UV-Vis spectroscopy technique. All composites appeared to have some degree of photocatalytic activity, with composites possessing an orthorhombic crystal structure having higher photocatalytic activity. The LaCoO3 composite is more efficient compared with LaFeO3 and LaNiO3 for both dyes. High degradation percentages were observed for the La composites with a 1:1 metal ratio.
Collapse
|
7
|
Wang Z, Guan S, Wang Y, Li W, Shi K, Li J, Xu Z. High Purity Struvite Recovery from Hydrothermally-Treated Sludge Supernatant Using Magnetic Zirconia Adsorbent. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13156. [PMID: 36293743 PMCID: PMC9602817 DOI: 10.3390/ijerph192013156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Recovery of phosphorus from sludge will help to alleviate the phosphorus resource crisis. However, the release of phosphorus from sludge is accompanied by the leaching of large amounts of coexisting ions, i.e., Fe, Al, Ca, and organic matter, which decreases the purity of sludge-derived products. In this study, an adsorption-desorption process using magnetic zirconia (MZ) as the adsorbent is proposed to obtain a high purity recovery product. The process involves selective adsorption of phosphate from the hydrothermally treated sludge supernatant (HTSS) using MZ, followed by desorption and precipitation to obtain the final product: struvite. The results indicated that at a dosage of 15 g/L, more than 95% of phosphorus in the HTSS could be adsorbed by MZ. Coexisting ions (Ca2+, Mg2+, Fe3+, Al3+, SO42-, NO3-, Cl-, etc.) and organic matter (substances similar to fulvic and humic acid) in the HTSS had a limited inhibitory effect on phosphate adsorption. Using a binary desorption agent (0.1 mol/L NaOH + 1 mol/L NaCl), 90% of the adsorbed phosphorus could be desorbed. Though adsorption-desorption treatment, struvite purity of the precipitated product increased from 41.3% to 91.2%. Additionally, MZ showed good reusability, maintaining a >75% capacity after five cycles. X-ray photoelectron spectroscopy (XPS) indicated that MZ adsorbed phosphate mainly by inner-sphere complexation. This study provided a feasible approach for the recovery of phosphorus from sludge with high purity.
Collapse
|
8
|
Kong H, Li Q, Zheng X, Chen P, Zhang G, Huang Z. Lanthanum modified chitosan-attapulgite composite for phosphate removal from water: Performance, mechanisms and applicability. Int J Biol Macromol 2022; 224:984-997. [DOI: 10.1016/j.ijbiomac.2022.10.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|