1
|
Cao X, He R, Jia M. Characterization of melanoidins in thermal hydrolysis sludge and effects on dewatering performance. ENVIRONMENTAL RESEARCH 2023; 239:117226. [PMID: 37788760 DOI: 10.1016/j.envres.2023.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Thermal hydrolysis pretreatment (THP) of sludge can form the refractory brown melanoidins due to the occurrence of the Maillard reaction, which adversely involves the subsequent sludge anaerobic digestion (AD) process. However, details of the generation pattern of melanoidins and how they affect the sludge dewaterability remain largely unknown. This work aims to determine an approach to characterize and quantify the melanoidins created by THP of sludge. On this basis, the effect of melanoidins on sludge dewatering performance was revealed by adding synthetic melanoidins to the mixed sludge. Experimental results showed that three-dimensional fluorescence-region integration (3DEEM-FRI) could effectively distinguish melanoidins from other organic substances and achieve semi-quantitative characterization in sludge. The melanoidins significantly deteriorated the sludge dewaterability, and the lowest solids content of the filter cake (TS) was only 17.78% at the addition of 480 mg (g TS)-1, which was a drop of about 20% compared to the control group. The mechanism investigations indicated that the internal structure of sludge becoming particularly complicated and the opportunities for molecules to collide with each other enlarged because of the contribution of melanoidins, resulting in the increment of the sludge apparent viscosity and consistency coefficient (k), a decline of the flow behavior index (n) and a weakening of flowability. Melanoidins could capture massive water molecules and carry negative charges with the decrease of sludge particle size and zeta potential value, which enhanced the electrostatic repulsion between sludge particles and abated the flocculation ability, thus further aggravating the sludge dewatering performance.
Collapse
Affiliation(s)
- Xiuqin Cao
- Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, 1#Zhanlanguan Road, Xicheng District, Beijing 100044, China.
| | - Ran He
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, 1#Zhanlanguan Road, Xicheng District, Beijing 100044, China
| | - Mingyan Jia
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, 1#Zhanlanguan Road, Xicheng District, Beijing 100044, China
| |
Collapse
|
2
|
Cubero-Cardoso J, Jiménez-Páez E, Trujillo-Reyes Á, Serrano A, Urbano J, Rodríguez-Gutiérrez G, Borja R, Fermoso FG. Valorization of strawberry extrudate waste: Recovery of phenolic compounds by direct-hydrothermal treatment and subsequent methane production by mesophilic semi-continuous anaerobic digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 169:310-318. [PMID: 37499411 DOI: 10.1016/j.wasman.2023.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/07/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
Strawberry extrudate (SE) is an underused by-product from strawberry industry. Recovery of the phenolic compounds present in SE would represent a very interesting valorisation option. Two main challenges need to be solved, firstly, the solubilisation and recovery of the phenolic compounds contained in SE, and, after that, the stabilisation of the resulted de-phenolized SE. The present research evaluates the potential of a biorefinery process combining a hydrothermal pre-treatment, followed by a phenolic extraction process and, finally, the anaerobic digestion of the remaining SE for producing energy that will contribute to compensate the energy requirements of the whole system. Following the hydrothermal pre-treatment at 170 °C for 60 min, an extraction of 0.6 ± 0.1 g of gallic acid per kilogram of SE was achieved using an adsorbent resin, representing a recovery rate of 64 %. Long-term semi-continuous anaerobic digestion of de-phenolized SE was evaluated at different organic loading rates to evaluate the stability of the process. The anaerobic digestion of pre-treated SE achieved a stable methane production value of 243 ± 34 mL CH4·g volatile solids-1·d-1 at an organic loading rate (ORL) of 1.25 g volatile solids·L-1·d-1. During the operation at this ORL, the control parameters including pH, alkalinity, soluble chemical organic demand (sCOD), and volatile fatty acid (VFA) remained stable and consistently constant. Specifically, the VFA in the reactor during this stable period achieved a value of 102 ± 128 mg O2/L. Also, an economic balance showed that the minimal price of the generated phenolic extract for having benefited from the proposed biorefinery system was 0.812 €·(g of gallic acid equivalents)-1, a price within the range of phenolic compounds used in the food industry.
Collapse
Affiliation(s)
- Juan Cubero-Cardoso
- Instituto de Grasa, Spanish National Research Council (CSIC). Campus Universidad Pablo de Olavide, Building 46. Ctra. de Utrera, km. 1, 41013 Seville, Spain; Laboratory of Sustainable and Circular Technology. CIDERTA and Chemistry Department, Faculty of Experimental Sciences. Campus de "El Carmen", University of Huelva, 21071 Huelva, Spain.
| | - Elena Jiménez-Páez
- Instituto de Grasa, Spanish National Research Council (CSIC). Campus Universidad Pablo de Olavide, Building 46. Ctra. de Utrera, km. 1, 41013 Seville, Spain; Institute of Water Research, University of Granada, 18071 Granada, Spain
| | - Ángeles Trujillo-Reyes
- Instituto de Grasa, Spanish National Research Council (CSIC). Campus Universidad Pablo de Olavide, Building 46. Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Antonio Serrano
- Institute of Water Research, University of Granada, 18071 Granada, Spain; Department of Microbiology, Pharmacy Faculty, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Juan Urbano
- Laboratory of Sustainable and Circular Technology. CIDERTA and Chemistry Department, Faculty of Experimental Sciences. Campus de "El Carmen", University of Huelva, 21071 Huelva, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Instituto de Grasa, Spanish National Research Council (CSIC). Campus Universidad Pablo de Olavide, Building 46. Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Rafael Borja
- Instituto de Grasa, Spanish National Research Council (CSIC). Campus Universidad Pablo de Olavide, Building 46. Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Fernando G Fermoso
- Instituto de Grasa, Spanish National Research Council (CSIC). Campus Universidad Pablo de Olavide, Building 46. Ctra. de Utrera, km. 1, 41013 Seville, Spain.
| |
Collapse
|
3
|
Cao X, Jia M, Tian Y. Rheological properties and dewaterability of anaerobic co-digestion with sewage sludge and food waste: effect of thermal hydrolysis pretreatment and mixing ratios. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2441-2456. [PMID: 37257102 PMCID: wst_2023_140 DOI: 10.2166/wst.2023.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Anaerobic co-digestion (co-AD) of sewage sludge (SS) and food waste (FW) converts municipal organic waste into renewable energy, which plays an important role in achieving carbon emissions reduction. The existing anaerobic digestion (AD) treatment projects often have problems such as low organic conversion and unstable performance. SS and FW were used as raw materials to explore the effects of thermal hydrolysis pretreatment (THP) and mixing ratios on the dewaterability and rheological properties of the digestate. The results showed that co-digestion of FW and SS in a ratio of 1:1 obtained the highest biogas production (255.14 mL/g VS), which was 1.53 times and 14.5 times higher than that of mono-digestion of FW and thermal hydrolysis pretreatment sewage sludge (THSS), respectively. However, the dewaterability of this ratio deteriorated sharply after co-digestion, with a decrease of 54.92%. The groups containing a higher proportion of THSS had improved dewaterability after AD. The apparent viscosity and shear stress were reduced by co-digestion compared with mono-digestion of THSS and FW, indicating a higher flow property of the co-digestion matrix. After the Herschel-Bulkley model fitting, there were linear correlations between rheological indices and soluble chemical oxygen demand (SCOD), and digestate dewaterability.
Collapse
Affiliation(s)
- Xiuqin Cao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, 1# Zhanlanguan Rd., Xicheng District, Beijing 100044, China E-mail:
| | - Mingyan Jia
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, 1# Zhanlanguan Rd., Xicheng District, Beijing 100044, China E-mail:
| | - Yuqing Tian
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, 1# Zhanlanguan Rd., Xicheng District, Beijing 100044, China E-mail:
| |
Collapse
|
4
|
Ma X, Li S, Pan R, Wang Z, Li J, Zhang X, Azeem M, Yao Y, Xu Z, Pan J, Zhang Z, Li R. Effect of biochar on the mitigation of organic volatile fatty acid emission during aerobic biostabilization of biosolids and the underlying mechanism. JOURNAL OF CLEANER PRODUCTION 2023; 390:136213. [DOI: 10.1016/j.jclepro.2023.136213] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|