1
|
Luo J, Zhang H, Liu Z, Zhang Z, Pan Y, Liang X, Wu S, Xu H, Xu S, Jiang C. A review of regeneration mechanism and methods for reducing soot emissions from diesel particulate filter in diesel engine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86556-86597. [PMID: 37421534 DOI: 10.1007/s11356-023-28405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
With the global emphasis on environmental protection and the proposal of the climate goal of "carbon neutrality," countries around the world are calling for reductions in carbon dioxide, nitrogen oxide, and particulate matter pollution. These pollutants have severe impacts on human lives and should be effectively controlled. Engine exhaust is the most serious pollution source, and diesel engine is an important contributor to particulate matter. Diesel particulate filter (DPF) technology has proven to be an effective technology for soot control at the present and in the future. Firstly, the exacerbating effect of particulate matter on human infectious disease viruses is discussed. Then, the latest developments in the influence of key factors on DPF performance are reviewed at different observation scales (wall, channel, and entire filter). In addition, current soot catalytic oxidant schemes are presented in the review, and the significance of catalyst activity and soot oxidation kinetic models are highlighted. Finally, the areas that need further research are determined, which has important guiding significance for future research. Current catalytic technologies are focused on stable materials with high mobility of oxidizing substances and low cost. The challenge of DPF optimization design is to accurately calculate the balance between soot and ash load, DPF regeneration control strategy, and exhaust heat management strategy.
Collapse
Affiliation(s)
- Jianbin Luo
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Haiguo Zhang
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Zhonghang Liu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Zhiqing Zhang
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China.
| | - Yajuan Pan
- School of Mechanical Engineering, Liuzhou Institute of Technology, Liuzhou, 545616, China
| | - Xiguang Liang
- Liuzhou Jindongfang Automotive Parts Co., Ltd., Liuzhou, 545036, China
| | - Shizhuo Wu
- Liuzhou Branch, Aisn AUTO R&D Co., Ltd., Liuzhou, 545616, China
| | - Hongxiang Xu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Song Xu
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, 545006, Liuzhou, China
| | - Chunmei Jiang
- Institute of the New Energy and Energy-Saving & Emission-Reduction, Guangxi University of Science and Technology, Liuzhou, 545006, China
| |
Collapse
|
2
|
Su H, Liu J, Hu Y, Ai T, Gong C, Lu J, Luo Y. Comparative Study of α- and β-MnO 2 on Methyl Mercaptan Decomposition: The Role of Oxygen Vacancies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:775. [PMID: 36839143 PMCID: PMC9964818 DOI: 10.3390/nano13040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
As a representative sulfur-containing volatile organic compounds (S-VOCs), CH3SH has attracted widespread attention due to its adverse environmental and health risks. The performance of Mn-based catalysts and the effect of their crystal structure on the CH3SH catalytic reaction have yet to be systematically investigated. In this paper, two different crystalline phases of tunneled MnO2 (α-MnO2 and β-MnO2) with the similar nanorod morphology were used to remove CH3SH, and their physicochemical properties were comprehensively studied using high-resolution transmission electron microscope (HRTEM) and electron paramagnetic resonance (EPR), H2-TPR, O2-TPD, Raman, and X-ray photoelectron spectroscopy (XPS) analysis. For the first time, we report that the specific reaction rate for α-MnO2 (0.029 mol g-1 h-1) was approximately 4.1 times higher than that of β-MnO2 (0.007 mol g-1 h-1). The as-synthesized α-MnO2 exhibited higher CH3SH catalytic activity towards CH3SH than that of β-MnO2, which can be ascribed to the additional oxygen vacancies, stronger surface oxygen migration ability, and better redox properties from α-MnO2. The oxygen vacancies on the catalyst surface provided the main active sites for the chemisorption of CH3SH, and the subsequent electron transfer led to the decomposition of CH3SH. The lattice oxygen on catalysts could be released during the reaction and thus participated in the further oxidation of sulfur-containing species. CH3SSCH3, S0, SO32-, and SO42- were identified as the main products of CH3SH conversion. This work offers a new understanding of the interface interaction mechanism between Mn-based catalysts and S-VOCs.
Collapse
Affiliation(s)
- Hong Su
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Jiangping Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Yanan Hu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Tianhao Ai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Chenhao Gong
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Jichang Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
| | - Yongming Luo
- The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
3
|
Insight into catalytic activity of K-Ce catalysts and K-Ce based mixed catalysts on diesel soot combustion. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Dai W, Li Z, Li C, Zhang C, Wang F, Liu P, Qiao H. Revealing the effects of preparation methods over Ce-MnOx catalysts for soot combustion: physicochemical properties and catalytic performance. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
5
|
Ceramic Papers as Structured Catalysts: Preparation and Application for Particulate Removal. Catalysts 2022. [DOI: 10.3390/catal12101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fibers represent a type of structure of great interest in catalysis since they combine high area to volume ratio and can be fabricated from many types of materials, such as ceramic oxides, polymers, and alloys. They can be used in isolated form or structured, as in the case of the ceramic papers synthesized in this work, following a modified papermaking technique. The addition of cationic and anionic polyelectrolytes improved the retention of ceramic fibers during the ceramic paper formation stage by adsorption processes, through the formation of floccules. In the complex aqueous system containing charged macromolecules, the amounts of polyelectrolytes to be added were determined by titrations. To enhance mechanical properties of ceramic papers, different classes of nanoparticle suspensions can be used as binders. As a novel alternative, we have used different borate-type compounds. Among them, we selected natural ulexite, which was purified and used as a binder of ceramic fibers. In order to improve mechanical resistance and flexibility, measured from tensile indexes and elastic module, the amounts of NaCaB5O6(OH)6.5H2O and the calcination temperature were varied. In this contribution, to take advantage of the unique characteristics of the ulexite-containing ceramic papers, they were impregnated with Co,Ce and Co,Ba,K and tested for diesel soot combustion.
Collapse
|
6
|
Activity of Catalytic Ceramic Papers to Remove Soot Particles—A Study of Different Types of Soot. Catalysts 2022. [DOI: 10.3390/catal12080855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diesel soot particles are of concern for both the environment and health. To catalytically remove them, it is important to know their structure and composition. There is little described in the literature on how catalysts favor the combustion of different soot fractions. In this work, programmed temperature oxidation (TPO) experiments were carried out using Co,Ce or Co,Ba,K catalysts supported on ceramic papers. Soot particles were obtained by burning diesel fuel in a vessel (LabSoot) or by filtering exhaust gases from a turbo diesel engine in a DPF filter (BenchSoot), and compared with a commercial diesel soot: Printex U. Various characterization techniques were useful to relate the characteristics of both the soot particles and the catalysts with the TPO results. The maximum catalytic soot burn rate (TM) temperatures were in the range of diesel exhaust temperatures that would facilitate in-situ regeneration of the DPF. The Co,Ba,K catalyst showed a higher catalytic effect in LabSoot, as the latter exhibited the largest primary particles and the higher order of graphene layers, for which the potassium-containing catalyst improves the contact between soot and catalyst and favors the combustion of soot, while the Co,Ce catalyst preferentially enhanced the combustion of commercial soot by supplying active oxygen.
Collapse
|