1
|
Xie Z, Pan L, Nie M, Cai G, Liang H, Tang J, Zhao X. Deciphering the inhibitory mechanisms of didecyldimethylammonium chloride on microalgal removal of fluoxetine: Insights from the alterations in cell surface properties and the physio-biochemical and molecular toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177841. [PMID: 39644638 DOI: 10.1016/j.scitotenv.2024.177841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
The COVID-19 pandemic has increased the co-occurrence of quaternary ammonium compounds (QACs) and antidepressants in aquatic environments. Microalgae are sustainable and cost-effective candidates for removing emerging pollutants. QACs have a robust ability to adsorb on cell surface and alter membrane permeability, but little is known about the influence of QACs on microalgal bioremediation of co-existing pollutants like antidepressants. In this study, the influence mechanisms of didecyldimethylammonium chloride (DDAC) on the removal of fluoxetine (FLX) by C. pyrenoidosa were explored. The results showed that C. pyrenoidosa exhibited high removal efficiency of single FLX (75.23 %-88.65 %) mainly through biodegradation (57.12 %-67.19 %). However, the coexisting medium and high concentrations of DDAC considerably decreased the biodegradation amount (10.50 %-33.30 %) and removal efficiency (29.47 %-52.89 %) of FLX by C. pyrenoidosa. In contrast, the presence of DDAC increased extracellular and intracellular FLX concentrations due to the enhanced extracellular polymeric substance content, cell surface hydrophobicity, and cell membrane permeability. Meanwhile, DDAC showed synergistic effects with FLX on microalgal growth through exacerbated oxidative damage and photosynthesis inhibition. Moreover, transcriptomics revealed that the dysregulations of key genes involved in the DNA replication and repair, ribosome biogenesis, photosynthesis-antenna proteins, peroxisomes, and glutathione metabolism pathways were important molecular mechanisms underlying the synergistic toxicity. Furthermore, the principal component analysis suggested that the enhancement of extracellular and intracellular FLX concentrations induced by the coexistence of DDAC increased the mixture's toxicity, resulting in the decreased biodegradation amount and ultimately a reduction in the removal efficiency of FLX. Our results highlight the significance of recognizing the influence of QACs on microalgal remediation and ecological risks of antidepressants.
Collapse
Affiliation(s)
- Zhengxin Xie
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Lin Pan
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Meng Nie
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Guiyuan Cai
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Hebin Liang
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jun Tang
- Research Center of Ecological Environmental Protection and Pollution Remediation Engineering, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Wan L, Huang R, Zhou Y, Guo J, Jiao Y, Gao J. Effects of Ciprofloxacin on the Production and Composition of Cellular Microcystins in Microcystis aeruginosa. TOXICS 2024; 12:759. [PMID: 39453179 PMCID: PMC11511219 DOI: 10.3390/toxics12100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Antibiotics can affect the photosynthetic system of Microcystis, potentially altering the balance of carbon and nitrogen, which may influence the synthesis of different microcystin (MC) congeners. However, the regulatory mechanisms by which antibiotics affect the synthesis of various MC congeners in Microcystis remain unknown. In this study, the effects of ciprofloxacin (CIP) on the growth, carbon and nitrogen balance, amino acid composition, mcyB gene expression, and production of different MC congeners were investigated in two toxin-producing strains of Microcystis aeruginosa. The results show that CIP exposure significantly inhibited the growth of both strains, achieving an inhibition rate of 71.75% in FACHB-315 and 41.13% in FACHB-915 at 8 μg/L CIP by the end of the cultivation. The intracellular C:N ratio in FACHB-315 increased by 51.47%, while no significant change was observed in FACHB-915. The levels of leucine, tyrosine, and arginine, as identified and quantified by UPLC-MS/MS, were significantly altered at higher CIP concentrations, leading to a reduction in leucine percentage and a notable increase in tyrosine in both strains, which contributed to a reduction in MC-LR proportion and an increase in MC-RR and MC-YR proportion. Additionally, the expression of the mcyB gene was upregulated by as much as 5.57 times, indicating that antibiotic stress could enhance MC synthesis at the genetic level, contributing to the increased toxicity of cyanobacteria. These findings emphasize the significant role of CIP in the biochemical processes of M. aeruginosa, particularly in MC synthesis and composition, providing valuable insights into the ecological risks posed by antibiotics and harmful cyanobacteria.
Collapse
Affiliation(s)
- Liang Wan
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| | - Rong Huang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Yan Zhou
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Jiahao Guo
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
| | - Yiying Jiao
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| | - Jian Gao
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China
- Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan 430068, China
- Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
3
|
Yildiztugay E, Arikan Abdulveli B, Ozfidan-Konakci C, Turkan I. Melatonin mediated tolerance to benzalkonium chloride phytotoxicity through improved growth, photochemical reactions, and antioxidant system in wild-type and snat2 mutant Arabidopsis lines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108779. [PMID: 38823090 DOI: 10.1016/j.plaphy.2024.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Melatonin (Mel) is a phytohormone that plays a crucial role in various plant processes, including stress response. Despite numerous studies on the role of Mel in stress resistance, its significance in plants exposed to benzalkonium chloride (BAC) pollution remains unexplored. BAC, a common antiseptic, poses a threat to terrestrial plants due to its widespread use and inefficient removal, leading to elevated concentrations in the environment. This study investigated the impact of BAC (0.5 mg L-1) pollution on wild-type Col-0 and snat2 knockout mutant Arabidopsis lines, revealing reduced growth, altered water relations, and gas exchange parameters. On the other hand, exogenous Mel (100 μM) treatments mitigated BAC-induced phytotoxicity and increased the growth rate by 1.8-fold in Col-0 and 2-fold in snat2 plants. snat2 mutant seedlings had a suppressed carbon assimilation rate (A) under normal conditions, but BAC contamination led to further A repression by 71% and 48% in Col-0 and snat2 leaves, respectively. However, Mel treatment on stressed plants was successful in improving Fv/Fm and increased the total photosynthesis efficiency by regulating photochemical reactions. Excessive H2O2 accumulation in the guard cells of plants exposed to BAC pollution was detected by confocal microscopy. Mel treatments triggered almost all antioxidant enzyme activities (except POX) in both Arabidopsis lines under stress. This enhanced antioxidant activity, facilitated by foliar Mel application, contributed to the alleviation of oxidative damage, regulation of photosynthesis reactions, and promotion of plant growth in Arabidopsis. In addition to corroborating results observed in many agricultural plants regarding the development of tolerance to environmental stresses, this study provides novel insights into the action mechanisms of Mel under the emerging pollutant benzalkonium chloride.
Collapse
Affiliation(s)
- Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Busra Arikan Abdulveli
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42130, Konya, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Ismail Turkan
- Department of Soil Science and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
4
|
Wang T, Xu D, Chang X, MacIsaac HJ, Li J, Xu J, Zhang J, Zhang H, Zhou Y, Xu R. Can a shift in dominant species of Microcystis alter growth and reproduction of waterfleas? HARMFUL ALGAE 2024; 136:102657. [PMID: 38876528 DOI: 10.1016/j.hal.2024.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
The bloom-forming species Microcystis wesenbergii and M. aeruginosa occur in many lakes globally, and may exhibit alternating blooms both spatially and temporally. As environmental changes increase, cyanobacteria bloom in more and more lakes and are often dominated by M. wesenbergii. The adverse impact of M. aeruginosa on co-existing organisms including zooplanktonic species has been well-studied, whereas studies of M. wesenbergii are limited. To compare effects of these two species on zooplankton, we explored effects of exudates from different strains of microcystin-producing M. aeruginosa (Ma905 and Ma526) and non-microcystin-producing M. wesenbergii (Mw908 and Mw929), on reproduction by the model zooplankter Daphnia magna in both chronic and acute exposure experiments. Specifically, we tested physiological, biochemical, molecular and transcriptomic characteristics of D. magna exposed to Microcystis exudates. We observed that body length and egg and offspring number of the daphnid increased in all treatments. Among the four strains tested, Ma526 enhanced the size of the first brood, as well as total egg and offspring number. Microcystis exudates stimulated expression of specific genes that induced ecdysone, juvenile hormone, triacylglycerol and vitellogenin biosynthesis, which, in turn, enhanced egg and offspring production of D. magna. Even though all strains of Microcystis affected growth and reproduction, large numbers of downregulated genes involving many essential pathways indicated that the Ma905 strain might contemporaneously induce damage in D. magna. Our study highlights the necessity of including M. wesenbergii into the ecological risk evaluation of cyanobacteria blooms, and emphasizes that consequences to zooplankton may not be clear-cut when assessments are based upon production of microcystins alone.
Collapse
Affiliation(s)
- Tao Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Ningbo Yonghuanyuan Environmental Engineering and Technology CO., LTD, Ningbo 315000, China
| | - Daochun Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Hugh J MacIsaac
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Jingjing Li
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
| | - Jun Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinlong Zhang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hongyan Zhang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuan Zhou
- The Ecological and Environmental Monitoring Station of DEEY in Kunming, Kunming 650228, China
| | - Runbing Xu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
5
|
Mao Y, Ye K, Yang S, Salam M, Yu W, He Q, He R, Li H. Repeated Exposure Enhanced Toxicity of Clarithromycin on Microcystis aeruginosa Versus Single Exposure through Photosynthesis, Oxidative Stress, and Energy Metabolism Shift. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4070-4082. [PMID: 38390827 DOI: 10.1021/acs.est.3c07008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Antibiotics are being increasingly detected in aquatic environments, and their potential ecological risk is of great concern. However, most antibiotic toxicity studies involve single-exposure experiments. Herein, we studied the effects and mechanisms of repeated versus single clarithromycin (CLA) exposure on Microcystis aeruginosa. The 96 h effective concentration of CLA was 13.37 μg/L upon single exposure but it reduced to 6.90 μg/L upon repeated exposure. Single-exposure CLA inhibited algal photosynthesis by disrupting energy absorption, dissipation and trapping, reaction center activation, and electron transport, thereby inducing oxidative stress and ultrastructural damage. In addition, CLA upregulated glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle. Repeated exposure caused stronger inhibition of algal growth via altering photosynthetic pigments, reaction center subunits biosynthesis, and electron transport, thereby inducing more substantial oxidative damage. Furthermore, repeated exposure reduced carbohydrate utilization by blocking the pentose phosphate pathway, consequently altering the characteristics of extracellular polymeric substances and eventually impairing the defense mechanisms of M. aeruginosa. Risk quotients calculated from repeated exposure were higher than 1, indicating significant ecological risks. This study elucidated the strong influence of repeated antibiotic exposure on algae, providing new insight into antibiotic risk assessment.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Kailai Ye
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Shengfa Yang
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Ruixu He
- Key Laboratory of Hydraulic and Waterway Engineering, Ministry of Education, Chongqing Jiaotong University, Chongqing 400074, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
6
|
Mohapatra S, Xian JLL, Galvez-Rodriguez A, Ekande OS, Drewes JE, Gin KYH. Photochemical fate of quaternary ammonium compounds (QACs) and degradation pathways predication through computational analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133483. [PMID: 38232547 DOI: 10.1016/j.jhazmat.2024.133483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Quaternary ammonium compounds (QACs) are commonly used in many products, such as disinfectants, detergents and personal care products. However, their widespread use has led to their ubiquitous presence in the environment, posing a potential risk to human and environmental health. Several methods, including direct and indirect photodegradation, have been explored to remove QACs such as benzylalkyldimethyl ammonium compounds (BACs) and alkyltrimethyl ammonium compounds (ATMACs) from the environment. Hence, in this research, a systematic review of the literature was conducted using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) method to understand the fate of these QACs during direct and indirect photodegradation in UV/H2O2, UV/PS, UV/PS/Cu2+, UV/chlorine, VUV/UV/chlorine, O3/UV and UV/O3/TiO2 systems which produce highly reactive radicals that rapidly react with the QACs, leading to their degradation. As a result of photodegradation, several transformation products (TPs) of QACs are formed, which can pose a greater risk to the environment and human health than the parent QACs. Only limited research in this area has been conducted with fewer QACs. Hence, quantum mechanical calculations such as density functional theory (DFT)-based computational calculations using Gaussian09 software package were used here to explain better the photo-resistant nature of a specific type of QACs, such as BACs C12-18 and ATMACs C12, C14, C18, and their transformation pathways, providing insights into active sites participating in the phototransformation. Recognizing that different advanced oxidation processes (AOPs) come with pros and cons in the elimination of QACs, this review also highlighted the importance of implementing each AOP concerning the formation of toxic transformation products and electrical energy per order (EEO), especially when QACs coexist with other emerging contaminants (ECs).
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore; Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O Box 5048, 2600 GA Delft, the Netherlands
| | - Jovina Lew Li Xian
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore
| | | | - Onkar Sudhir Ekande
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Jörg E Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, 85748 Garching, Germany
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, 5A Engineering Drive 1, 117411, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore; Department of Civil & Environmental Engineering, National University of Singapore, Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
7
|
Liao M, Wei S, Zhao J, Wang J, Fan G. Risks of benzalkonium chlorides as emerging contaminants in the environment and possible control strategies from the perspective of ecopharmacovigilance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115613. [PMID: 37862750 DOI: 10.1016/j.ecoenv.2023.115613] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
An unprecedented increase in the use of disinfection products triggered by the coronavirus disease 2019 (COVID-19) pandemic is resulting in aggravating environmental loads of disinfectants as emerging contaminants, which has been considered a cause for worldwide secondary disasters. This review analyzed the literature published in the last decade about occurrence, bioaccumulation, and possible environmental risks of benzalkonium chlorides (BKCs) as emerging contaminants. Results indicated that BKCs globally occurred in municipal wastewater, surface water, groundwater, reclaimed water, sludge, sediment, soil, roof runoff, and residential dust samples across 13 countries. The maximum residual levels of 30 mg/L and 421 μg/g were reported in water and solid environmental samples, respectively. Emerging evidences suggested possible bioaccumulation of BKCs in plants, even perhaps humans. Environmentally relevant concentrations of BKCs exert potential adverse impacts on aquatic and terrestrial species, including genotoxicity, respiratory toxicity, behavioural effects and neurotoxicity, endocrine disruption and reproductive impairment, phytotoxicity, etc. Given the intrinsic biocidal and preservative properties of disinfectants, the inductive effects of residual BKCs in environment in terms of resistance and imbalance of microorganisms have been paid special attention. Considering the similarities of disinfectants to pharmaceuticals, from the perspective of ecopharmacovigilance (EPV), a well-established strategy for pharmaceutical emerging contaminants, we use the control of BKC pollution as a case, and provide some recommendations for employing the EPV measures to manage environmental risks posed by disinfectant emerging contaminants.
Collapse
Affiliation(s)
- Mengfan Liao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Songyi Wei
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jinru Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Guangquan Fan
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
8
|
Ivanova B. Stochastic Dynamic Mass Spectrometric Quantitative and Structural Analyses of Pharmaceutics and Biocides in Biota and Sewage Sludge. Int J Mol Sci 2023; 24:6306. [PMID: 37047279 PMCID: PMC10094044 DOI: 10.3390/ijms24076306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Mass spectrometric innovations in analytical instrumentation tend to be accompanied by the development of a data-processing methodology, expecting to gain molecular-level insights into real-life objects. Qualitative and semi-quantitative methods have been replaced routinely by precise, accurate, selective, and sensitive quantitative ones. Currently, mass spectrometric 3D molecular structural methods are attractive. As an attempt to establish a reliable link between quantitative and 3D structural analyses, there has been developed an innovative formula [DSD″,tot=∑inDSD″,i=∑in2.6388.10-17×Ii2¯-Ii¯2] capable of the exact determination of the analyte amount and its 3D structure. It processed, herein, ultra-high resolution mass spectrometric variables of paracetamol, atenolol, propranolol, and benzalkonium chlorides in biota, using mussel tissue and sewage sludge. Quantum chemistry and chemometrics were also used. Results: Data on mixtures of antibiotics and surfactants in biota and the linear dynamic range of concentrations 2-80 ng.(mL)-1 and collision energy CE = 5-60 V are provided. Quantitative analysis of surfactants in biota via calibration equation ln[D″SD] = f(conc.) yields the exact parameter |r| = 0.99991, examining the peaks of BAC-C12 at m/z 212.209 ± 0.1 and 211.75 ± 0.15 for tautomers of fragmentation ions. Exact parameter |r| = 1 has been obtained, correlating the theory and experiments in determining the 3D molecular structures of ions of paracetamol at m/z 152, 158, 174, 301, and 325 in biota.
Collapse
Affiliation(s)
- Bojidarka Ivanova
- Lehrstuhl für Analytische Chemie, Institut für Umweltforschung, Fakultät für Chemie und Chemische Biologie, Universität Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Nordrhein-Westfalen, Germany
| |
Collapse
|