1
|
Vardhaman S, Borba M, Kaizer MR, Kim DK, Zhang Y. Optical and Mechanical Properties of the Multi-Transition Zones of a Translucent Zirconia. J ESTHET RESTOR DENT 2024. [PMID: 39325338 DOI: 10.1111/jerd.13319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE To characterize the composition, flexure resistance, and optical properties of a multilayer translucent zirconia in relation to its multi-transition zones. MATERIALS AND METHODS A multilayer zirconia (5Y/4Y) and a conventional 3 mol% yttria partially stabilized zirconia (3Y) were investigated. Bar-shaped specimens were obtained from the enamel and dentin layers, and the vertical cross-section of 5Y/4Y (N = 10). A four-point flexural (σf) test was performed using a universal testing machine (1.0 mm/min). Plate-shaped specimens (N = 6) were also produced from the enamel, transition 1, transition 2, and dentin layers. Translucency parameters (TPab and TP00) were determined using a dental spectrophotometer (N = 6). X-ray fluorescence and X-ray diffraction techniques were used to analyze elemental (N = 2) and phase compositions (N = 2), respectively. Data were analyzed using analysis of variance (ANOVA) and Tukey's test (α = 0.05). RESULTS The yttrium content and σf varied between layers of 5Y/4Y. 3Y had the highest σf, followed by dentin. Enamel and cross-section showed lower and statically similar σf. 3Y and dentin groups had similar but statistically lower TPab and TP00 than the enamel. CONCLUSIONS Different layers of multilayered zirconia have distinct compositions, which affect their mechanical and optical properties. The weak enamel layer compromises the mechanical properties of cross-sectional specimens. CLINICAL SIGNIFICANCE The development of novel cubic-containing multilayer zirconia ceramics to produce monolithic restorations brings new challenges to dental clinicians and laboratory technicians. The CAD/CAM design of multilayered 5Y/4Y restorations should consider the esthetic and mechanical requirements of each clinical case, as different properties are found in the different layers of these materials.
Collapse
Affiliation(s)
- Sonaj Vardhaman
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- College of Dental Medicine, Columbia University, New York, New York, USA
| | - Marcia Borba
- University of Manchester, Manchester, UK
- University of Passo Fundo, Passo Fundo, Brazil
| | - Marina R Kaizer
- Centre for Rural Dentistry and Oral Health, Charles Sturt University, Orange, New South Wales, Australia
- Post-Graduate Program in Dentistry, Universidade Positivo, Curitiba, Paraná, Brazil
| | - Do Kyung Kim
- Department of Materials Science and Engineering, KAIST, Daejeon, South Korea
| | - Yu Zhang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Pereira RM, Belli R, Lohbauer U, Hurle K, Campos TMB, Thim GP. Fatigue strength of bilayer yttria-stabilized zirconia after low-temperature degradation. J Mech Behav Biomed Mater 2024; 160:106725. [PMID: 39270447 DOI: 10.1016/j.jmbbm.2024.106725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
This study examined the impact of interfacial interactions on bilayer yttria-stabilized zirconia (YSZ) used in dental restorations. In-house bilayer structures of 3YSZ and 5YSZ composition underwent hydrothermal degradation to compare the properties of control and low-temperature degradation (LTD) treated groups. Biaxial flexural strength via piston-on-three-balls, staircase fatigue strength over 106 cycles at 15 Hz, phase characterization and quantification through XRD and Rietveld refinement, and fractography were conducted. Weibull analysis was employed to determine the Weibull modulus and characteristic strength. Results demonstrated an enhancement in the mechanical performance of 3YSZ composition after LTD treatment, whereas the mechanical properties of 5YSZ remained largely unaffected post-degradation. Fractographic analysis revealed that failure originated at the surface tensile location across all specimen groups. These findings offer insights into the mechanical behavior of bilayer zirconia structures and reinforce the significance of hydrothermal treatment in enhancing their performance, particularly in the case of 3Y compositions.
Collapse
Affiliation(s)
- Raíssa Monteiro Pereira
- Laboratory of Plasma and Process, Technological Institute of Aeronautics, Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP, 12228-900, Brazil.
| | - Renan Belli
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Forschungslabor für dentale Biomaterialien Zahnklinik 1 - Zahnerhaltung und Parodontologie, Glückstrasse 11, Erlangen, Germany
| | - Ulrich Lohbauer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Forschungslabor für dentale Biomaterialien Zahnklinik 1 - Zahnerhaltung und Parodontologie, Glückstrasse 11, Erlangen, Germany
| | - Katrin Hurle
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), GeoZentrum Nordbayern, Institut für Mineralogie, Schlossgarten 5a, 91054, Erlangen, Germany
| | - Tiago Moreira Bastos Campos
- Laboratory of Plasma and Process, Technological Institute of Aeronautics, Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP, 12228-900, Brazil
| | - Gilmar Patrocínio Thim
- Laboratory of Plasma and Process, Technological Institute of Aeronautics, Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP, 12228-900, Brazil
| |
Collapse
|
3
|
Nakamura K, Shishido S, Inagaki R, Kanno T, Barkarmo S, Svanborg P, Örtengren U. Critical evaluations on the crystallographic properties of translucent dental zirconia ceramics stabilized with 3-6 mol% yttria. Dent Mater 2024; 40:1425-1451. [PMID: 38942711 DOI: 10.1016/j.dental.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVES This study aimed to determine the crystalline phase composition of 3-6 mol% yttria-stabilized zirconia (3-6YSZ), specifically investigating the presence of tetragonal (t), cubic (c), and/or additional yttria-rich tetragonal (t') phase. METHODS Laboratory-fabricated specimens comprising 3-5YSZ, resembling translucent dental zirconia ceramics (TZ specimens), and a blend of 3YSZ and 8YSZ, representing a c-phase reference, were prepared. Additionally, 25 dental zirconia products stabilized with 3-6 mol% yttria were analyzed. Whole X-ray diffraction (XRD) patterns were obtained for Rietveld analysis, complemented by fine scanning in the 2θ region from 72º to 76º for qualitative phase analysis. Moreover, yttria concentrations in each specimen were determined using X-ray fluorescence (XRF) spectroscopy. RESULTS In the 2θ region from 72º to 76º, TZ and dental zirconia product specimens displayed four peaks attributed to t- and t'-phases, but the c-phase peak was absent. Rietveld analysis of the whole XRD patterns, utilizing a t-t' model, demonstrated the t-phase fraction ranging from 86 mass% in 3YSZ to 11 mass% in 6YSZ. Rietveld analysis appeared reliable, as the yttria contents calculated based on lattice parameters aligned well with those measured by XRF. This study established that dental 3-6YSZ consisted of yttria-lean t- and yttria-rich t'-phases. SIGNIFICANCE The present study enhances understanding of the crystalline structure of dental zirconia ceramics. Future crystallographic analyses of these ceramics should consider the presence of t- and t'-phases.
Collapse
Affiliation(s)
- Keisuke Nakamura
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980 8575, Japan; Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| | - Shunichi Shishido
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980 8575, Japan
| | - Ryoichi Inagaki
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980 8575, Japan
| | - Taro Kanno
- Department of Advanced Free Radical Science, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980 8575, Japan
| | - Sargon Barkarmo
- Department of Prosthetic Dentistry/Dental Materials Science, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Per Svanborg
- Department of Prosthetic Dentistry/Dental Materials Science, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Ulf Örtengren
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Department of Material Science and Technology, Faculty of Odontology, Malmö University, SE-206 05 Malmö, Sweden
| |
Collapse
|
4
|
Nonaka K, Teramae M, Pezzotti G. Effect of rapid cooling on residual stress and surface fracture toughness of dental zirconia. J Mech Behav Biomed Mater 2024; 157:106656. [PMID: 39033559 DOI: 10.1016/j.jmbbm.2024.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024]
Abstract
Short-time sintering of dental zirconia not only improves manufacturing efficiency of zirconia prosthetics, but also enables an attractive situation in which prosthetic treatment can be completed within a single visit. Although many studies have clarified the effects of heating rate and dwell time on the properties of dental zirconia during short-time sintering, there are only a few studies on rapid cooling. In this study, we investigated the effect of cooling rate on dental zirconia. It was found that the cooling rate had no effect on the three-point flexural strength, but a fast cooling rate improved fracture toughness at the material surface. Raman piezo-spectroscopy showed that a compressive stress layer formed in the neighborhood of the zirconia surface and that its thickness increased with increasing cooling rate. From the above results, it was concluded that the compressive stress layer formed on the surface by rapid cooling improved the apparent fracture toughness at the material surface.
Collapse
Affiliation(s)
- Kazumichi Nonaka
- Department of Research and Development, SHOFU INC., Higashiyama-ku, Kyoto, Japan.
| | - Mitsuji Teramae
- Department of Research and Development, SHOFU INC., Higashiyama-ku, Kyoto, Japan
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan; Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Osaka, 573-1010, Japan
| |
Collapse
|
5
|
Mayinger F, Ender A, Strickstrock M, Elsayed A, Nassary Zadeh P, Zimmermann M, Stawarczyk B. Impact of the sintering parameters on the grain size, crystal phases, translucency, biaxial flexural strength, and fracture load of zirconia materials. J Mech Behav Biomed Mater 2024; 155:106580. [PMID: 38759588 DOI: 10.1016/j.jmbbm.2024.106580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVES To investigate the influence of the zirconia and sintering parameters on the optical and mechanical properties. METHODS Three zirconia materials (3/4Y-TZP, 4Y-TZP, 3Y-TZP) were high-speed (HSS), speed (SS) or conventionally (CS) sintered. Disc-shaped specimens nested in 4 vertical layers of the blank were examined for grain size (GS), crystal phases (c/t'/t/m-phase), translucency (T), and biaxial flexural strength. Fracture load (FL) of three-unit fixed dental prostheses was determined initially and after thermomechanical aging. Fracture types were classified, and data statistically analyzed. RESULTS 4Y-TZP showed a higher amount of c + t'-phase and lower amount of t-phase, and higher optical and lower mechanical properties than 3Y-TZP. In all materials, T declined from Layer 1 to 4. 3/4Y-TZP showed the highest FL, followed by 3Y-TZP, while 4Y-TZP showed the lowest. In 4Y-TZP, the sintering parameters exercised a direct impact on GS and T, while mechanical properties were largely unaffected. The sintering parameters showed a varying influence on 3Y-TZP. Thermomechanical aging resulted in comparable or higher FL. CONCLUSION 3/4Y-TZP presenting the highest FL underscores the principle of using strength-gradient multi-layer blanks to profit from high optical properties in the incisal area, while ensuring high mechanical properties in the lower areas subject to tensile forces. With all groups exceeding maximum bite forces, the examined three-unit FDPs showed promising long-term mechanical properties.
Collapse
Affiliation(s)
- Felicitas Mayinger
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany.
| | - Andreas Ender
- Division of Computerized Restorative Dentistry, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Monika Strickstrock
- Faculty of Engineering and Computer Science, Material Science and Analysis, University of Applied Sciences Osnabrück, Albrechtstraße 30, 49076, Osnabrück, Germany
| | - Adham Elsayed
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Parissa Nassary Zadeh
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| | - Marcus Zimmermann
- Division of Computerized Restorative Dentistry, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Bogna Stawarczyk
- Department of Prosthetic Dentistry, University Hospital, LMU Munich, Goethestraße 70, 80336, Munich, Germany
| |
Collapse
|
6
|
Cesar PF, Miranda RBDP, Santos KF, Scherrer SS, Zhang Y. Recent advances in dental zirconia: 15 years of material and processing evolution. Dent Mater 2024; 40:824-836. [PMID: 38521694 PMCID: PMC11098698 DOI: 10.1016/j.dental.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVES The objective was to discuss the research on zirconia published in the past 15 years to help the dental materials community understand the key properties of the types of zirconia and their clinical applications. METHODS A literature search was performed in May/2023 using Web of Science Core Collection with the term "dental zirconia". The search returned 5102 articles, which were categorized into 31 groups according to the research topic. RESULTS The current approach to improving the translucency of zirconia is to decrease the alumina content while increasing the yttria content. The resulting materials (4Y-, 5Y-, and above 5 mol% PSZs) may contain more than 50% of cubic phase, with a decrease in mechanical properties. The market trend for zirconia is the production of CAD/CAM disks containing more fracture resistant 3Y-TZP at the bottom layers and more translucent 5Y-PSZ at the top. Although flaws located between layers in multilayered blocks might represent a problem, newer generations of zirconia layered blocks appear to have solved this problem with novel powder compaction technology. Significant advancements in zirconia processing technologies have been made, but there is still plenty of room for improvement, especially in the fields of high-speed sintering and additive manufacturing. SIGNIFICANCE The wide range of zirconia materials currently available in the market may cause confusion in materials selection. It is therefore imperative for dental clinicians and laboratory technicians to get the needed knowledge on zirconia material science, to follow manufacturers' instructions, and to optimize the design of the prosthetic restoration with a good understanding where to reinforce the structure with a tough and strong zirconia.
Collapse
Affiliation(s)
- Paulo Francisco Cesar
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| | | | - Karina Felix Santos
- Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Susanne S Scherrer
- Division of Fixed Prosthodontics and Biomaterials, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Yu Zhang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
7
|
Berger L, Matta RE, Weiß CM, Adler W, Wichmann M, Zorzin JI. Effect of Luting Materials on the Accuracy of Fit of Zirconia Copings: A Non-Destructive Digital Analysis Method. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2130. [PMID: 38730936 PMCID: PMC11084802 DOI: 10.3390/ma17092130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
The marginal accuracy of fit between prosthetic restorations and abutment teeth represents an essential aspect with regard to long-term clinical success. Since the final gap is also influenced by the luting techniques and materials applied, this study analyzed the accuracy of the fit of single-tooth zirconia copings before and after cementation using different luting materials. Forty plaster dies with a corresponding zirconia coping were manufactured based on a single tooth chamfer preparation. The copings were luted on the plaster dies (n = 10 per luting material) with a zinc phosphate (A), glass-ionomer (B), self-adhesive resin (C), or resin-modified glass-ionomer cement (D). The accuracy of fit for each coping was assessed using a non-destructive digital method. Intragroup statistical analysis was conducted using Wilcoxon signed rank tests and intergroup analysis by Kruskal-Wallis and Mann-Whitney U tests (α = 0.05). Accuracy of fit was significantly different before/after cementation within A (0.033/0.110 µm) and B (0.035/0.118 µm; p = 0.002). A had a significantly increased marginal gap compared to C and D, and B compared to C and D (p ≤ 0.001). Significantly increased vertical discrepancies between A and B versus C and D (p < 0.001) were assessed. Of the materials under investigation, the zinc phosphate cement led to increased vertical marginal discrepancies, whereas the self-adhesive resin cement did not influence the restoration fit.
Collapse
Affiliation(s)
- Lara Berger
- Department of Prosthodontics, University Hospital Erlangen, Glückstrasse 11, 91054 Erlangen, Germany; (L.B.); (C.M.W.)
| | - Ragai-Edward Matta
- Department of Prosthodontics, University Hospital Erlangen, Glückstrasse 11, 91054 Erlangen, Germany; (L.B.); (C.M.W.)
| | - Christian Markus Weiß
- Department of Prosthodontics, University Hospital Erlangen, Glückstrasse 11, 91054 Erlangen, Germany; (L.B.); (C.M.W.)
| | - Werner Adler
- Institute of Medical Informatics, Biometry and Epidemiology (IMBE) of the Friedrich-Alexander-University, Erlangen-Nuremberg, Waldstrasse 6, 91054 Erlangen, Germany;
| | - Manfred Wichmann
- Department of Prosthodontics, University Hospital Erlangen, Glückstrasse 11, 91054 Erlangen, Germany; (L.B.); (C.M.W.)
| | - José Ignacio Zorzin
- Dental Clinic 1—Department of Operative Dentistry and Periodontology, Erlangen University Hospital, Glueckstrasse 11, 91054 Erlangen, Germany;
| |
Collapse
|
8
|
Kim HY, Cho JH, Yoon HI, Lee JH, Choi S, Han JS, Yeo ISL. Topographical and crystalline change on surface by sandblasting improve flexural and shear bond strength of niobia-modified yttria-stabilized tetragonal zirconia polycrystal. Dent Mater J 2024; 43:216-226. [PMID: 38417860 DOI: 10.4012/dmj.2023-225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
This study aimed to investigate the effects of sandblasting on the physical properties and bond strength of two types of translucent zirconia: niobium-oxide-containing yttria-stabilized tetragonal zirconia polycrystals ((Y, Nb)-TZP) and 5 mol% yttria-partially stabilized zirconia (5Y-PSZ). Fully sintered disc specimens were either sandblasted with 125 µm alumina particles or left as-sintered. Surface roughness, crystal phase compositions, and surface morphology were explored. Biaxial flexural strength (n=10) and shear bond strength (SBS) (n=12) were evaluated, including thermocycling conditions. Results indicated a decrease in flexural strength of 5Y-PSZ from 601 to 303 MPa upon sandblasting, while (Y, Nb)-TZP improved from 458 to 544 MPa. Both materials significantly increased SBS after sandblasting (p<0.001). After thermocycling, (Y, Nb)-TZP maintained superior SBS (14.3 MPa) compared to 5Y-PSZ (11.3 MPa) (p<0.001). The study concludes that (Y, Nb)-TZP is preferable for sandblasting applications, particularly for achieving durable bonding without compromising flexural strength.
Collapse
Affiliation(s)
- Ha-Young Kim
- Department of Prosthodontics, Seoul National University School of Dentistry
| | - Jun-Ho Cho
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University
| | - Hyung-In Yoon
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University
| | - Jae-Hyun Lee
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University
| | - Sunyoung Choi
- Department of Prosthodontics, One-Stop Specialty Center, Seoul National University Dental Hospital
| | - Jung-Suk Han
- Department of Prosthodontics, Seoul National University School of Dentistry
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University
| |
Collapse
|
9
|
Li Q, Yang Y, Chen K, Jiang Y, Swain MV, Yao M, He Y, Liang Y, Jian Y, Zhao K. Effect of low-temperature degradation on the fatigue performance of dental strength-gradient multilayered zirconia restorations. J Dent 2024; 142:104866. [PMID: 38281620 DOI: 10.1016/j.jdent.2024.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024] Open
Abstract
OBJECTIVES Fatigue and low-temperature degradation (LTD) are the main factors contributing to zirconia restoration failure. This study evaluated the effect of LTD on the fatigue performance of the novel "strength & shade-gradient" multilayered zirconia restorations. METHODS Discs (15 mm × 1.2 mm) of each yttria content layer from a newly developed strength-gradient multilayered zirconia were fabricated and under accelerated aging in an autoclave at 134℃ for 0 h, 32 h, and 64 h. Then, the phase transformation, microstructure, and mechanical properties after LTD were assessed. In addition, the crown samples, including the multi-Zir, 3Y-Zir, and 5Y-Zir were fabricated, and their monotonic and fatigue load before and after LTD, percentage of fatigue degradation (Sd) and the fracture morphology were investigated. Statistical analyses were performed using paired samples t-test (α' = α/3 = 0.017), one-way ANOVA and Weibull analysis. RESULTS After LTD, the phase transformation, surface roughness, depth of transformed zone, and residual stress were increased and inversely associated with the yttria content. The indentation elastic modulus and hardness after LTD decreased; however, there was no significant difference between the different yttria content layers. The monotonic and fatigue load of multi-Zir restorations decreased, but their Weibull modulus increased, and Sd decreased, similar to 3Y-Zir. The crack origin was associated with the cervical region. CONCLUSION These results show that although LTD reduces the absolute fatigue strength of strength-gradient multilayered zirconia restorations, it also reduces the effect of cyclic fatigue itself on the strength of zirconia (relative to monotonic strength), which might be due to the increase of residual stress. CLINICAL SIGNIFICANCE The novel "strength & shade-gradient" multilayered zirconia restorations show a promising performance during in vitro LTD and fatigue test and their reliability to some extent is comparable to 3Y-Zir. Yet, further in vivo longitudinal studies are warranted to confirm their precise performance.
Collapse
Affiliation(s)
- Qiulan Li
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yunxu Yang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Kuangyao Chen
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yingyu Jiang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Michael V Swain
- Don State Technical University, Rostov-on-Don 344000, Russia; AMME, Sydney University, Sydney, Australia
| | - Mianfeng Yao
- Xiangya Hospital Central South University, Changsha 410008, China
| | - Ying He
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yujie Liang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Yutao Jian
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Institute of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
| | - Ke Zhao
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
10
|
Wang L, Wang K, Sheng Y, Hao Z, Tang W, Dou R. The effect of phase contents on the properties of yttria stabilized zirconia dental materials fabricated by stereolithography-based additive manufacturing. J Mech Behav Biomed Mater 2024; 150:106313. [PMID: 38109815 DOI: 10.1016/j.jmbbm.2023.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
The aim is to investigate the impact of phase contents on mechanical properties, translucency, and aging stability of additively manufactured yttria partially stabilized zirconia ceramics. For that purpose, we evaluated two PSZ materials. The first type was prepared utilizing commercially available 5 mol% yttria-stabilized zirconia(5Y-PSZ), while the second type, denoted as 3Y+8Y-PSZ ceramics, was fabricated by blending 3 mol% and 8 mol% yttria-stabilized zirconia powders. Compared to 5Y-PSZ (39.90 wt% tetragonal phases and c/a2 = 1.0141), 3Y+8Y-PSZ is characterized by a greater abundance of tetragonal phases (47.68 wt%), which display higher tetragonality (c/a2 = 1.0165) and lower yttrium oxide content (2.25mol%). As a result, the 3Y+8Y-PSZ demonstrates elevated strength (816.52 MPa) and toughness (4.32 MPa m1/2), accompanied by reduced translucency(CR:0.47) and it exhibits greater susceptibility to aging. The phase contents, yttrium oxide content, and lattice parameters in the tetragonal phase play a crucial role in determining the mechanical properties, translucency, and aging stability of PSZ ceramics.
Collapse
Affiliation(s)
- Li Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Kang Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yang Sheng
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zongdong Hao
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Weizhe Tang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Rui Dou
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, China; Institute of Advanced Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
11
|
Lubauer J, Schuenemann FH, Belli R, Lohbauer U. Speed-sintering and the mechanical properties of 3-5 mol% Y 2O 3-stabilized zirconias. Odontology 2023; 111:883-890. [PMID: 36859729 PMCID: PMC10492746 DOI: 10.1007/s10266-023-00796-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/15/2023] [Indexed: 03/03/2023]
Abstract
Ever faster workflows for the fabrication of all-ceramic restorations are of high economic interest. For that purpose, sintering protocols have been optimized for use in modern sintering furnaces, the so-called speed-sintering. However, conventional furnaces are still the most widely used equipment to sinter zirconia restorations. In this in-vitro study, we evaluated the feasibility of a speed-sintering protocol using a conventional sintering furnace to sinter different dental zirconias (stabilized with 3 mol% up to 5.4 mol% Y2O3) in comparison to a conventional sintering program. The properties evaluated were Young's modulus, Poisson's ratio, density, biaxial flexural strength, and fracture toughness. We show here that despite differences being dependent on material, the physical and mechanical properties of speed-sintered zirconia are comparable to those obtained by the conventional sintering.
Collapse
Affiliation(s)
- Julia Lubauer
- Zahnklinik 1-Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstraße 11, 91054, Erlangen, Germany
| | - Fernanda Haverroth Schuenemann
- Zahnklinik 1-Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstraße 11, 91054, Erlangen, Germany
| | - Renan Belli
- Zahnklinik 1-Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstraße 11, 91054, Erlangen, Germany.
| | - Ulrich Lohbauer
- Zahnklinik 1-Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Glueckstraße 11, 91054, Erlangen, Germany
| |
Collapse
|
12
|
Kongkiatkamon S, Rokaya D, Kengtanyakich S, Peampring C. Current classification of zirconia in dentistry: an updated review. PeerJ 2023; 11:e15669. [PMID: 37465158 PMCID: PMC10351515 DOI: 10.7717/peerj.15669] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
Zirconia, a crystalline oxide of zirconium, holds good mechanical, optical, and biological properties. The metal-free restorations, mostly consisting of all-ceramic/zirconia restorations, are becoming popular restorative materials in restorative and prosthetic dentistry choices for aesthetic and biological reasons. Dental zirconia has increased over the past years producing wide varieties of zirconia for prosthetic restorations in dentistry. At present, literature is lacking on the recent zirconia biomaterials in dentistry. Currently, no article has the latest information on the various zirconia biomaterials in dentistry. Hence, the aim of this article is to present an overview of recent dental zirconia biomaterials and tends to classify the recent zirconia biomaterials in dentistry. This article is useful for dentists, dental technicians, prosthodontists, academicians, and researchers in the field of dental zirconia.
Collapse
Affiliation(s)
- Suchada Kongkiatkamon
- Department of Prosthetic Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Dinesh Rokaya
- Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Santiphab Kengtanyakich
- Prosthodontic Section, Department of Restorative Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Chaimongkon Peampring
- Department of Prosthetic Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
13
|
Ban S. Development and characterization of ultra-high translucent zirconia using new manufacturing technology. Dent Mater J 2023; 42:1-10. [PMID: 36631076 DOI: 10.4012/dmj.2022-243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review describes the development of ultra-high translucent zirconia (referred to as UHTZ) using new manufacturing technology and its characterization results. The development of UHTZ was primarily due to the adoption of two basic manufacturing technologies, "Cyclic CIP" and "Plus Y Technology". This manufacturing technology could provide stable processing characteristics, which improves chipping resistance during milling. Furthermore, the enlargement factor (processing coefficient) for UHTZ is smaller than those for conventional products. In general, the higher the light transmittance, the lower the flexural strength. Despite its extremely high translucency, the most significant feature of UTHZ is that its flexural strength is comparable to that of 5Y. Furthermore, UHTZ has higher chemical durability and uniform microstructure, which results in less wear on the opposing teeth and superior discoloration resistance. Therefore, UHTZ is a new option for inlay, onlay, and laminate veneer applications, where lithium disilicate glass ceramics has been widely used.
Collapse
Affiliation(s)
- Seiji Ban
- Department of Dental Materials Science, School of Dentistry, Aichi Gakuin University
| |
Collapse
|
14
|
Begand S, Spintzyk S, Geis-Gerstorfer J, Bourauel C, Keilig L, Lohbauer U, Worpenberg C, Greuling A, Adjiski R, Jandt KD, Lümkemann N, Stawarczyk B, Güllmar A, Kailer A, Oberle N, Stephan M. Fracture toughness of 3Y-TZP ceramic measured by the Chevron-Notch Beam method: A round-robin study. Dent Mater 2022; 38:1128-1139. [PMID: 35618552 DOI: 10.1016/j.dental.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This interlaboratory round robin test investigated the robustness of the Chevron-Notch Beam (CNB) test method and the effect of the processing and testing variations on the fracture toughness of a dental 3Y-TZP ceramic. METHODS The round robin test was performed precisely following the procedures recommended in ISO 24370:2005 and applied on a commercial 3Y-TZP ceramic (product information). A total of 335 test specimens with dimensions 3×4 x 45 mm³ was equally distributed among 10 participating laboratories of varying experience in fracture toughness testing. A standard operating procedure was defined with either narrow processing tolerances or alternative (wider) processing tolerances (as proposed in ISO 24370). Fracture toughness data (series 2) was analyzed using one way ANOVA followed by post hoc Tukey HSD test and 95% Confidence Intervals (CI) were computed (p < 0.05). A further, preceding round-robin (series 1) test was conducted with - more possible variations of test conditions regarding CNB notch processing and storage conditions. Those results are summarized in the supplement and discussed with the actual ISO 24370 test. RESULTS Fracture toughness of the 3Y-TZP ceramic material, summarized over all laboratories was measured to KIc = 4.48 ± 0.11 MPam0.5 for the standard processing tolerance and KIc = 4.55 ± 0.31 MPam0.5 for the alternative tolerance. The results revealed a significant influence of cutting offset and notch geometry on KIc when using CNB method. The test medium also has a significant influence on KIc in terms of reduced fracture toughness under the influence of water. With defined testing conditions the number of valid tests and reduced standard deviation increased. In case of strictly following such standard operation procedures, KIc can be determined with high reliability. There is no difference between the involved laboratories, but significant influence of cutting offset on KIC was observed. SIGNIFICANCE The CNB method is suitable method for determination of KIc on fine-grained ceramics such as 3Y-TZP ceramic. By using tighter tolerances for processing and testing, i.e. closely following the ISO 24370 procedure, a highly-precise evaluation of fracture toughness with low data variation is achievable. The information of the storage medium should always be reported along with the data. CNB fracture toughness testing is an alternative method compared to Single-edge V-notch beam (SEVNB), especially for fine-grained ceramics.
Collapse
Affiliation(s)
- Sabine Begand
- Fraunhofer Institute for Ceramics Technologies and Systems IKTS, Michael-Faraday-Str. 1, 07629 Hermsdorf, Germany.
| | - Sebastian Spintzyk
- University Hospital Tübingen, Section "Medical Materials Science & Technology", Osianderstr. 2-8, 72076 Tuebingen, Germany
| | - Jürgen Geis-Gerstorfer
- University Hospital Tübingen, Section "Medical Materials Science & Technology", Osianderstr. 2-8, 72076 Tuebingen, Germany
| | - Christoph Bourauel
- University Hospital Bonn, Oral Technology, School of Dentistry, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
| | - Ludger Keilig
- University Hospital Bonn, Oral Technology, School of Dentistry, University of Bonn, Welschnonnenstr. 17, 53111 Bonn, Germany
| | - Ulrich Lohbauer
- University of Erlangen-Nuremberg, Dental Clinic 1 - Operative Dentistry and Periodontology, Glueckstrasse 11, 91054 Erlangen, Germany
| | - Christin Worpenberg
- Hannover Medical School, Clinic for Dental Prosthetics, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Andreas Greuling
- Hannover Medical School, Clinic for Dental Prosthetics, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Ranko Adjiski
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Klaus D Jandt
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Nina Lümkemann
- Department of Prosthetic Dentistry, University Hospital, Dental School, Ludwig-Maximilians-University Munich, Goethestraße 70, 80336 Munich, Germany
| | - Bogna Stawarczyk
- Department of Prosthetic Dentistry, University Hospital, Dental School, Ludwig-Maximilians-University Munich, Goethestraße 70, 80336 Munich, Germany
| | - André Güllmar
- University Hospital Jena, Polyclinic for Conservative Dentistry, An der Alten Post, 407743 Jena, Germany
| | - Andreas Kailer
- Fraunhofer IWM, Freiburg, Wöhlerstraße 11, 79108 Freiburg im Breisgau, Germany
| | - Natalie Oberle
- Fraunhofer IWM, Freiburg, Wöhlerstraße 11, 79108 Freiburg im Breisgau, Germany
| | - Marc Stephan
- Materials Competence Center bei Institut Straumann AG, Peter-Merian-Weg 12, CH-4002 Basel, Switzerland
| |
Collapse
|
15
|
A split-Chevron-Notched-Beam sandwich specimen for fracture toughness testing of bonded interfaces. J Mech Behav Biomed Mater 2022; 131:105236. [DOI: 10.1016/j.jmbbm.2022.105236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 11/22/2022]
|
16
|
Lubauer J, Belli R, Peterlik H, Hurle K, Lohbauer U. Grasping the Lithium hype: Insights into modern dental Lithium Silicate glass-ceramics. Dent Mater 2021; 38:318-332. [PMID: 34961642 DOI: 10.1016/j.dental.2021.12.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Lithium-based glass-ceramics are currently dominating the landscape of dental restorative ceramic materials, with new products taking the market by storm in the last years. Though, the difference among all these new and old products is not readily accessible for the practitioner, who faces the dilemma of reaching a blind choice or trusting manufacturers' marketing brochures. To add confusion, new compositions tend to wear material terminologies inherited from vanguard dental lithium disilicates, disregarding accuracy. Here we aim to characterize such materials for their microstructure, crystalline fraction, glass chemistry and mechanical properties. METHODS Eleven commercial dental lithium-based glass ceramics were evaluated: IPS e.max® CAD, IPS e.max® Press, Celtra® Duo, Suprinity® PC, Initial™ LiSi Press, Initial™ LiSi Block, Amber® Mill, Amber® Press, N!CE®, Obsidian® and CEREC Tessera™. The chemical composition of their base glasses was measured by X-Ray Fluorescence Spectroscopy (XRF) and Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES), as well as the composition of their residual glass by subtracting the oxides bound in the crystallized fraction, characterized by X-Ray Diffraction (XRD) and Rietveld refinement, and quantified accurately using the G-factor method (QXRD). The crystallization behavior is revealed by differential scanning calorimetry (DSC) curves. Elastic constants are provided from Resonant Ultrasound Spectroscopy (RUS) and the fracture toughness measured by the Ball-on-Three-Balls method (B3B- K Ic). The microstructure is revealed by field-emission scanning electron microscopy (FE-SEM). RESULTS The base glasses showed a wide range of SiO2 /Li2O ratios, from 1.5 to 3.0, with the degree of depolymerization dropping from ½ to 2/3 of the initial connectivity. Materials contained Li2SiO3+Li3PO4, Li2SiO3+Li3PO4+Li2Si2O5, Li2Si2O5+Li3PO4+ Cristobalite and/or Quartz and Li2Si2O5+Li3 PO4+LiAlSi2O6, in crystallinity degrees from 45 to 80 vol%. Crystalline phases could be traced to their crystallization peaks on the DSC curves. Pressable materials and IPS e.max® CAD were the only material showing micrometric phases, with N!CE® and Initial™ LiSi Block showing solely nanometric crystals, with the rest presenting a mixture of submicrometric and nanometric particles. Fracture toughness from 1.45 to 2.30 MPa√m were measured, with the linear correlation to crystalline fraction breaking down for submicrometric and nanometric crystal phases. SIGNIFICANCE Dental lithium-based silicate glass-ceramics cannot be all put in the same bag, as differences exist in chemical composition, microstructure, crystallinity and mechanical properties. Pressable materials still perform better mechanically than CAM/CAM blocks, which loose resistance to fracture when crystal phases enter the submicrometric and nanometric range.
Collapse
Affiliation(s)
- Julia Lubauer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Zahnklinik 1 - Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Glueckstrasse 11, 91054 Erlangen, Germany
| | - Renan Belli
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Zahnklinik 1 - Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Glueckstrasse 11, 91054 Erlangen, Germany.
| | - Herwig Peterlik
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Katrin Hurle
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), GeoZentrum Nordbayern, Mineralogy, Schlossgarten 5a, 91054 Erlangen, Germany
| | - Ulrich Lohbauer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Zahnklinik 1 - Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Glueckstrasse 11, 91054 Erlangen, Germany
| |
Collapse
|