1
|
Choi Y, Han S, Park BI, Xu Z, Huang Q, Bae S, Kim JS, Kim SO, Meng Y, Kim SI, Moon JY, Roh I, Park JW, Bae SH. Perovskite nanocomposites: synthesis, properties, and applications from renewable energy to optoelectronics. NANO CONVERGENCE 2024; 11:36. [PMID: 39249580 PMCID: PMC11383915 DOI: 10.1186/s40580-024-00440-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024]
Abstract
The oxide and halide perovskite materials with a ABX3 structure exhibit a number of excellent properties, including a high dielectric constant, electrochemical properties, a wide band gap, and a large absorption coefficient. These properties have led to a range of applications, including renewable energy and optoelectronics, where high-performance catalysts are needed. However, it is difficult for a single structure of perovskite alone to simultaneously fulfill the diverse needs of multiple applications, such as high performance and good stability at the same time. Consequently, perovskite nanocomposites have been developed to address the current limitations and enhance their functionality by combining perovskite with two or more materials to create complementary materials. This review paper categorizes perovskite nanocomposites according to their structural composition and outlines their synthesis methodologies, as well as their applications in various fields. These include fuel cells, electrochemical water splitting, CO2 mitigation, supercapacitors, and optoelectronic devices. Additionally, the review presents a summary of their research status, practical challenges, and future prospects in the fields of renewable energy and electronics.
Collapse
Affiliation(s)
- Yunseok Choi
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sangmoon Han
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Bo-In Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhihao Xu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Qingge Huang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sanggeun Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Justin S Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Sun Ok Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuan Meng
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Seung-Il Kim
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Department of Energy Systems Research and Department of Materials Science and Engineering, Ajou University, Suwon, 16499, South Korea
| | - Ji-Yun Moon
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Ilpyo Roh
- R&D CENTER, M.O.P Co., Ltd, Seoul, 07281, South Korea
| | - Ji-Won Park
- R&D Center of JB Lab Corporation, Gwanak-Gu, Seoul, 08788, Republic of Korea.
| | - Sang-Hoon Bae
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA.
- The Institution of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
2
|
Yue Z, Jiang L, Chen Z, Ai N, Zou Y, Jiang SP, Guan C, Wang X, Shao Y, Fang H, Luo Y, Chen K. Ultrafine, Dual-Phase, Cation-Deficient PrBa 0.8Ca 0.2Co 2O 5+δ Air Electrode for Efficient Solid Oxide Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8138-8148. [PMID: 36719322 DOI: 10.1021/acsami.2c21172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanostructured air electrodes play a crucial role in improving the electrocatalytic activity of oxygen reduction and evolution reactions in solid oxide cells (SOCs). Herein, we report the fabrication of a nanostructured BaCoO3-decorated cation-deficient PrBa0.8Ca0.2Co2O5+δ (PBCC) air electrode via a combined modification and direct assembly approach. The modification approach endows the dual-phase air electrode with a large surface area and abundant oxygen vacancies. An intimate air electrode-electrolyte interface is in situ constructed with the formation of a catalytically active Co3O4 bridging layer via electrochemical polarization. The corresponding single cell exhibits a peak power density of 2.08 W cm-2, an electrolysis current density of 1.36 A cm-2 at 1.3 V, and a good operating stability at 750 °C for 100 h. This study provides insights into the rational design and facile utilization of an active and stable nanostructured air electrode of SOCs.
Collapse
Affiliation(s)
- Zhongwei Yue
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lizhen Jiang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhiyi Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Na Ai
- Fujian College Association Instrumental Analysis Center, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuanfeng Zou
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, Guangdong 528216, China
| | - San Ping Jiang
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, Guangdong 528216, China
| | - Chengzhi Guan
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xin Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yanqun Shao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Huihuang Fang
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Yu Luo
- National Engineering Research Center of Chemical Fertilizer Catalyst (NERC-CFC), College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Kongfa Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
3
|
Zhao Z, Zou M, Huang H, Zhai X, Wofford H, Tong J. Insight of BaCe 0.5Fe 0.5O 3- δ twin perovskite oxide composite for solid oxide electrochemical cells. JOURNAL OF THE AMERICAN CERAMIC SOCIETY. AMERICAN CERAMIC SOCIETY 2023; 106:186-200. [PMID: 36589901 PMCID: PMC9796143 DOI: 10.1111/jace.18643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 06/17/2023]
Abstract
One-pot synthesized twin perovskite oxide composite of BaCe0.5Fe0.5O3- δ (BCF), comprising cubic and orthorhombic perovskite phases, shows triple-conducting properties for promising solid oxide electrochemical cells. Phase composition evolution of BCF under various conditions was systematically investigated, revealing that the cubic perovskite phase could be fully/partially reduced into the orthorhombic phase under certain conditions. The reduction happened between the two phases at the interface, leading to the microstructure change. As a result, the corresponding apparent conducting properties also changed due to the difference between predominant conduction properties for each phase. Based on the revealed phase composition, microstructure, and electrochemical properties changes, a deep understanding of BCF's application in different conditions (oxidizing atmospheres, reducing/oxidizing gradients, cathodic conditions, and anodic conditions) was achieved. Triple-conducting property (H+/O2-/e-), fast open-circuit voltage response (∼16-∼470 mV) for gradients change, and improved single-cell performance (∼31% lower polarization resistance at 600°C) were comprehensively demonstrated. Besides, the performance was analyzed under anodic conditions, which showed that the microstructure and phase change significantly affected the anodic behavior.
Collapse
Affiliation(s)
- Zeyu Zhao
- Materials Science and EngineeringClemson UniversityClemsonSouth CarolinaUSA
| | - Minda Zou
- Materials Science and EngineeringClemson UniversityClemsonSouth CarolinaUSA
| | - Hua Huang
- Materials Science and EngineeringClemson UniversityClemsonSouth CarolinaUSA
| | - Ximei Zhai
- Materials Science and EngineeringClemson UniversityClemsonSouth CarolinaUSA
| | - Harrison Wofford
- Materials Science and EngineeringClemson UniversityClemsonSouth CarolinaUSA
| | - Jianhua Tong
- Materials Science and EngineeringClemson UniversityClemsonSouth CarolinaUSA
| |
Collapse
|
4
|
Han L, Zhang J, Zou M, Tong JJ. Toward Superb Perovskite Oxide Electrocatalysts: Engineering of Coupled Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204784. [PMID: 36300911 DOI: 10.1002/smll.202204784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/06/2022] [Indexed: 06/16/2023]
Abstract
A significant issue that bedeviled the commercialization of renewable energy technologies, ranging from low-temperature water electrolyzers to high-temperature solid oxide cells, is the lack of high-performance catalysts. Among various candidates that could tackle such a challenge, perovskite oxides are rising-star materials because of their unique structural and compositional flexibility. However, single-phase perovskite oxides are challenging to satisfy all the requirements of electrocatalysts concurrently for practical applications, such as high catalytic activity, excellent stability, good ionic and electronic conductivities, and superior chemical/thermo-mechanical robustness. Impressively, perovskite oxides with coupled nanocomposites are emerging as a novel form offering multifunctionality due to their intrinsic features, including infinite interfaces with solid interaction, tunable compositions, flexible configurations, and maximum synergistic effects between assorted components. Considering this new configuration has attracted great attention owing to its promising performances in various energy-related applications, this review timely summarizes the leading-edge development of perovskite oxide-based coupled nanocomposites. Their state-of-art synthetic strategies are surveyed and highlighted, their unique structural advantages are highlighted and illustrated through the typical oxygen reduction reaction and oxygen evolution reactions in both high and low-temperature applications. Opinions on the current critical scientific issues and opportunities in this burgeoning research field are all provided.
Collapse
Affiliation(s)
- Liang Han
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jiawei Zhang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Minda Zou
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Jianhua Joshua Tong
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|