1
|
Frippiat T, van den Wollenberg L, van Erck-Westergren E, van Maanen K, Votion DM. Respiratory viruses affecting health and performance in equine athletes. Virology 2024; 603:110372. [PMID: 39837220 DOI: 10.1016/j.virol.2024.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Some respiratory viruses can affect equine athletes, with acute respiratory clinical signs leading to a reduced ability to perform. The direct association between equine respiratory viruses and athletic performance is unclear in subclinically affected horses. This narrative review summarises the current evidence on respiratory viruses most commonly detected in performing horses, including equine herpesviruses, equine influenza virus, equine rhinitis viruses, equine arteritis virus, and equine adenovirus 1. It covers their virology, clinical manifestations, epidemiology, pathogenesis, diagnosis, and control measures, with a focus on their impact on performance. Molecular diagnostics on nasopharyngeal swabs are the preferred method for detecting equine respiratory viruses nowadays. Studies highlighted in this review reveal a high prevalence of equine herpesviruses -particularly gammaherpesviruses- in the airways of both healthy and diseased horses. In contrast, equine rhinitis A virus, equine arteritis virus, and equine adenovirus 1 are the least common viruses. Transportation contributes to spreading equine infectious diseases across countries and can temporarily weaken the immune system, increasing the risk of respiratory viral infections and reactivation of latent equine herpesviruses. Moreover, respiratory viral infections are frequently observed in young horses starting their training. Although there is limited evidence on the specific impact of equine respiratory viruses on performance, this review emphasises that vaccination and care management are essential strategies for limiting the spread and severity of outbreaks in sport horses.
Collapse
Affiliation(s)
- Thibault Frippiat
- Equine Sports Medicine - Sportpaardenarts, Laren, Netherlands; Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| | | | | | | | - Dominique-Marie Votion
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Afify AF, Hassanien RT, El Naggar RF, Rohaim MA, Munir M. Unmasking the ongoing challenge of equid herpesvirus- 1 (EHV-1): A comprehensive review. Microb Pathog 2024; 193:106755. [PMID: 38897362 DOI: 10.1016/j.micpath.2024.106755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/01/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
Equid herpesviruses (EHVs) are a group of highly impactful viral pathogens that affect horses, presenting a substantial risk to the global equine industry. Among these, equid herpesvirus-1 (EHV-1) primarily causes respiratory infections. However, its ability to spread to distant organs can lead to severe consequences such as abortion and neurological diseases. These viruses can enter a dormant phase, with minimal activity, and later reactivate to trigger active infections at any time. Recently, there has been a notable rise in the prevalence of a particularly devastating strains of EHV-1 known as equid herpesviral myeloencephalopathy (EHM). In the light of dynamic nature of EHV-1, this review provides a thorough overview of EHV-1 and explores how advances in viral biology affect the pathophysiology of viral infection. The information presented here is crucial for understanding the dynamics of EHV-1 infections and creating practical plans to stop the virus's global spread among equid populations.
Collapse
Affiliation(s)
- Ahmed F Afify
- Department of Virology, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, 12618, Egypt
| | - Rabab T Hassanien
- Department of Virology, Animal Health Research Institute, Agriculture Research Center (ARC), Giza, 12618, Egypt
| | - Rania F El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, 32897, Egypt
| | - Mohammed A Rohaim
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt; Division of Biomedical and Life Science, Lancaster University, Lancaster, LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Science, Lancaster University, Lancaster, LA1 4YG, UK.
| |
Collapse
|
3
|
Badr C, Souiai O, Arbi M, El Behi I, Essaied MS, Khosrof I, Benkahla A, Chabchoub A, Ghram A. Epidemiological and Phylogeographic Study of Equid Herpesviruses in Tunisia. Pathogens 2022; 11:pathogens11091016. [PMID: 36145448 PMCID: PMC9504996 DOI: 10.3390/pathogens11091016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Equid herpesvirus (EHV) is a contagious viral disease affecting horses, causing illness characterized by respiratory symptoms, abortion and neurological disorders. It is common worldwide and causes severe economic losses to the equine industry. The present study was aimed at investigating the incidence of EHVs, the genetic characterization of Tunisian isolates and a spatiotemporal study, using 298 collected samples from diseased and clinically healthy horses. The global incidence of EHV infection was found to be about 71.81%. EHV2 and EHV5 were detected in 146 (48.99%) and 159 (53.35%) sampled horses, respectively. EHV1 was detected in 11 samples (3.69%); EHV4 was not detected. Co-infections with EHV1-EHV2, EHV1-EHV5 and EHV2-EHV5 were observed in 0.33%, 1.34% and 31.54% of tested horses, respectively. Phylogenetic analyses showed that gB of EHV2 and EHV5 displays high genetic diversity with a nucleotide sequence identity ranging from 88 to 100% for EHV2 and 97.5 to 100% for EHV5. Phylogeography suggested Iceland and USA as the most likely countries of origin of the Tunisian EHV2 and EHV5 isolates. These viruses detected in Tunisia seemed to be introduced in the 2000s. This first epidemiological and phylogeographic study is important for better knowledge of the evolution of equid herpesvirus infections in Tunisia.
Collapse
Affiliation(s)
- Chaima Badr
- Laboratory of Epidemiology and Microbiology Veterinary (LR19IPT03), Institute Pasteur of Tunis, University Tunis El Manar, Tunis 1002, Tunisia
- Correspondence:
| | - Oussama Souiai
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR16IPT09), Institute Pasteur of Tunis, University Tunis El Manar, Tunis 1002, Tunisia
| | - Marwa Arbi
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR16IPT09), Institute Pasteur of Tunis, University Tunis El Manar, Tunis 1002, Tunisia
| | - Imen El Behi
- Laboratory of Epidemiology and Microbiology Veterinary (LR19IPT03), Institute Pasteur of Tunis, University Tunis El Manar, Tunis 1002, Tunisia
| | - Mohamed S. Essaied
- National School of Veterinary Medicine, Sidi Thabet, University of Manouba, La Manouba 2010, Tunisia
| | - Ines Khosrof
- National School of Veterinary Medicine, Sidi Thabet, University of Manouba, La Manouba 2010, Tunisia
| | - Alia Benkahla
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (LR16IPT09), Institute Pasteur of Tunis, University Tunis El Manar, Tunis 1002, Tunisia
| | - Ahmed Chabchoub
- National School of Veterinary Medicine, Sidi Thabet, University of Manouba, La Manouba 2010, Tunisia
- Laboratory of Viruses, Vectors and Hosts (LR20IPT10), Institute Pasteur of Tunis, University Tunis El Manar, Tunis 1002, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Microbiology Veterinary (LR19IPT03), Institute Pasteur of Tunis, University Tunis El Manar, Tunis 1002, Tunisia
| |
Collapse
|
4
|
An Outbreak of Equine Herpesvirus-4 in an Ecological Donkey Milk Farm in Romania. Vaccines (Basel) 2022; 10:vaccines10030468. [PMID: 35335100 PMCID: PMC8953855 DOI: 10.3390/vaccines10030468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 01/25/2023] Open
Abstract
Equine herpesviruses are important pathogens causing significant economic loss in equine and asinine populations. EHV-1/4 strains are mainly associated with respiratory distress. The aim of this study is to report the first EHV 4-associated respiratory disease in donkeys in Romania. Thirty-seven of three hundred jennies in an ecological donkey farm in southwest Romania started initially showing signs of severe upper respiratory tract disease, with ten concomitant late abortions/neonatal deaths and three neurological cases. There were nine fatalities. Pathological examination was performed, and samples were collected for Real-Time PCR analysis and histology. In addition, serum samples from 28 individuals with respiratory symptoms were collected and tested using indirect ELISA. RT-PCR identified the EHV-4 strain. Acute, diffuse necrotizing bronchointerstitial pneumonia with occasional intraepithelial intranuclear viral inclusion bodies was identified. Additionally, EHV-1/4-specific antibodies were found in 15 of the 28 sampled animals. Few studies on donkeys and herpesviruses have been published, and this is the first reported case of EHV-4 outbreak in Romania. There is a need for more extensive seroprevalence studies as, currently, the status of EHV-4 infection in donkeys in Romania is unknown.
Collapse
|
5
|
Bannai H, Takahashi Y, Ohmura H, Ebisuda Y, Mukai K, Kambayashi Y, Nemoto M, Tsujimura K, Ohta M, Raidal S, Padalino B. Decreased Virus-Neutralizing Antibodies Against Equine Herpesvirus type 1 In Nasal Secretions of Horses After 12-hour Transportation. J Equine Vet Sci 2021; 103:103665. [PMID: 34281635 DOI: 10.1016/j.jevs.2021.103665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/25/2022]
Abstract
This study evaluated the effects of 12-hour transportation on immune responses to equine herpesvirus type 1 (EHV-1) and type 4 (EHV-4). Possible replication of EHV-1 and EHV-4 was monitored by real-time PCR of nasal swabs and peripheral blood mononuclear cells (PBMCs), and changes in systemic and mucosal antibodies were investigated. Six healthy Thoroughbreds with transport experience were transported in commercial trucks, repeating the same three-hour route four times. Blood samples for cortisol measurement were taken before departure and every three hours. Nasal swabs, PBMCs, nasal wash and serum samples were collected before departure, at unloading, two and six days after arrival. Cortisol concentration increased significantly after three and six hours of transport (P < 0.05), confirming acute transport stress. However, no evidence of viral replication or lytic infection was observed, and serum virus neutralization (VN) titers for EHV-1 and EHV-4 were unchanged, except for one horse that showed a four-fold decrease in titer against EHV-1 after transportation. Urea and total IgA concentration in nasal washes increased significantly after transportation (P < 0.05), while total IgA/protein ratio was unchanged. A transient, ≥4-fold decrease in VN titers for EHV-1 in nasal wash concentrates was observed in four out of six horses after transportation (geometric mean titer declined from 202 to 57, P < 0.05), suggesting suppression of VN capacity in the nasal mucosa may contribute to susceptibility to EHV-1 after transportation. VN antibodies against EHV-4 in nasal secretion were not detected at any timepoint.
Collapse
Affiliation(s)
- Hiroshi Bannai
- Japan Racing Association, Equine Research Institute, Shimotsuke, Tochigi, Japan.
| | - Yuji Takahashi
- Japan Racing Association, Equine Research Institute, Shimotsuke, Tochigi, Japan
| | - Hajime Ohmura
- Japan Racing Association, Equine Research Institute, Shimotsuke, Tochigi, Japan
| | - Yusaku Ebisuda
- Japan Racing Association, Equine Research Institute, Shimotsuke, Tochigi, Japan
| | - Kazutaka Mukai
- Japan Racing Association, Equine Research Institute, Shimotsuke, Tochigi, Japan
| | | | - Manabu Nemoto
- Japan Racing Association, Equine Research Institute, Shimotsuke, Tochigi, Japan
| | - Koji Tsujimura
- Japan Racing Association, Equine Research Institute, Shimotsuke, Tochigi, Japan
| | - Minoru Ohta
- Japan Racing Association, Equine Research Institute, Shimotsuke, Tochigi, Japan
| | - Sharanne Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Barbara Padalino
- Department of Agriculture and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Pusterla N, Bain F, James K, Mapes S, Kenelty K, Barnett DC, Gaughan E, Craig B, Chappell DE, Vaala W. Frequency of molecular detection of equine herpesvirus-4 in nasal secretions of 3028 horses with upper airway infection. Vet Rec 2017; 180:593. [DOI: 10.1136/vr.104240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 11/04/2022]
Affiliation(s)
- N. Pusterla
- Department of Medicine and Epidemiology; School of Veterinary Medicine, University of California; Davis California USA
| | - F. Bain
- Merck Animal Health; Summit, New Jersey USA
| | - K. James
- Department of Medicine and Epidemiology; School of Veterinary Medicine, University of California; Davis California USA
| | - S. Mapes
- Department of Medicine and Epidemiology; School of Veterinary Medicine, University of California; Davis California USA
| | - K. Kenelty
- Department of Medicine and Epidemiology; School of Veterinary Medicine, University of California; Davis California USA
| | | | - E. Gaughan
- Merck Animal Health; Summit, New Jersey USA
| | - B. Craig
- Merck Animal Health; Summit, New Jersey USA
| | | | - W. Vaala
- Merck Animal Health; Summit, New Jersey USA
| |
Collapse
|
7
|
Reichert C, Campe A, Walter S, Pfaender S, Welsch K, Ruddat I, Sieme H, Feige K, Steinmann E, Cavalleri JMV. Frequent occurrence of nonprimate hepacivirus infections in Thoroughbred breeding horses - A cross-sectional study for the occurrence of infections and potential risk factors. Vet Microbiol 2017; 203:315-322. [PMID: 28619163 DOI: 10.1016/j.vetmic.2017.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
Recently, several new hepaciviruses have been identified of which the nonprimate hepacivirus (NPHV) - the closest relative to hepatitis C virus (HCV) discovered to date - is highly prevalent in horses. However, potential risk factors for the transmission of NPHV among horses remain still unknown. Therefore, the objective of this study was to investigate the occurrence of NPHV infections in Thoroughbreds in northern and western Germany and to identify potential risk factors associated with NPHV infections. Using a cross-sectional study design, a total of 733 serum samples from Thoroughbred broodmares and stallions from northern and western Germany were analyzed for the presence of anti-NPHV nonstructural protein 3 (NS3) antibodies and NPHV RNA using the luciferase immunoprecipitation system (LIPS) and a quantitative real-time PCR, respectively. Information regarding signalment, stud farm, breeding history and international transportation history of each horse were collected and evaluated. A frequent occurrence of NPHV was found in the study population with 453 seropositive horses (61.8%) and 134 horses (18.3%) carrying NPHV RNA. Furthermore, statistical analysis revealed that the probability of being infected decreased for horses with a transportation history with increasing age by 20% each year. For horses that stayed in Germany no association between age and infection could be observed. In conclusion, the high occurrence of NPHV infections in breeding Thoroughbreds suggests circulating NPHV infections, endemic herds or persistent shedding in these animals and revealed the association of age and international transportation as risk factor for NPHV infections.
Collapse
Affiliation(s)
- Claudia Reichert
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany.
| | - Amely Campe
- Department of Biometry, Epidemiology and Information Processing, WHO-Collaborating Center for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, 30559 Hannover, Germany.
| | - Stephanie Walter
- Institute of Experimental Virology, TWINCORE Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625 Hannover, Germany.
| | - Stephanie Pfaender
- Institute of Experimental Virology, TWINCORE Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625 Hannover, Germany.
| | - Kathrin Welsch
- Institute of Experimental Virology, TWINCORE Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625 Hannover, Germany.
| | - Inga Ruddat
- Department of Biometry, Epidemiology and Information Processing, WHO-Collaborating Center for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Bünteweg 2, 30559 Hannover, Germany.
| | - Harald Sieme
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany.
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany.
| | - Eike Steinmann
- Institute of Experimental Virology, TWINCORE Center for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Feodor-Lynen-Str. 7, 30625 Hannover, Germany.
| | - Jessika M V Cavalleri
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany.
| |
Collapse
|
8
|
Negussie H, Gizaw D, Tesfaw L, Li Y, Oguma K, Sentsui H, Tessema TS, Nauwynck HJ. Detection of Equine Herpesvirus (EHV) -1, -2, -4 and -5 in Ethiopian Equids with and without Respiratory Problems and Genetic Characterization of EHV-2 and EHV-5 Strains. Transbound Emerg Dis 2017; 64:1970-1978. [PMID: 28102009 DOI: 10.1111/tbed.12601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Indexed: 12/26/2022]
Abstract
Infections with equine herpesviruses (EHVs) are widespread in equine populations worldwide. Whereas both EHV-1 and EHV-4 produce well-documented respiratory syndromes in equids, the contribution of EHV-2 and EHV-5 to disease of the respiratory tract is still enigmatic. This study describes the detection and genetic characterization of EHVs from equids with and without clinical respiratory disease. Virus-specific PCRs were used to detect EHV-1, -2, -4 and -5. From the total of 160 equids with respiratory disease, EHV-5 was detected at the highest prevalence (23.1%), followed by EHV-2 (20.0%), EHV-4 (8.1%) and EHV-1 (7.5%). Concurrent infections with EHV-2 and EHV-5 were recorded from nine (5.2%) diseased horses. Of the total of 111 clinically healthy equids, EHV-1 and EHV-4 were never detected whereas EHV-2 and EHV-5 were found in 8 (7.2%) and 18 (16.2%) horses, respectively. A significantly higher proportion of EHV-2-infected equids was observed in the respiratory disease group (32/160, 20.0%; P = 0.005) compared to those without disease (8/111; 7.2%). EHV-2-positive equids were three times more likely to display clinical signs of respiratory disease than EHV-2-negative equids (OR 3.22, 95% CI: 1.42-7.28). For EHV-5, the observed difference was not statistically significant (P = 0.166). The phylogenetic analysis of the gB gene revealed that the Ethiopian EHV-2 and EHV-5 strains had a remarkable genetic diversity, with a nucleotide sequence identity among each other that ranged from 94.0 to 99.4% and 95.1 to 100%, respectively. Moreover, the nucleotide sequence identity of EHV-2 and EHV-5 with isolates from other countries acquired from GenBank ranged from 92.9 to 99.1% and 95.1 to 99.5%, respectively. Our results suggest that besides EHV-1 and EHV-4, EHV-2 is likely to be an important contributor either to induce or predispose equids to respiratory disease. However, more work is needed to better understand the contribution of EHV-2 in the establishment of respiratory disease.
Collapse
Affiliation(s)
- H Negussie
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.,College of Veterinary Medicine and Agriculture, Addis Ababa University, Debre Ziet, Ethiopia
| | - D Gizaw
- National Animal Health Diagnostic and Investigation Center, Sebeta, Ethiopia
| | - L Tesfaw
- National Veterinary Institute, Debre zeit, Ethiopia
| | - Y Li
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - K Oguma
- School of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - H Sentsui
- School of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - T S Tessema
- Institute of Biotechnology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - H J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
9
|
Badenhorst M, Page P, Ganswindt A, Laver P, Guthrie A, Schulman M. Detection of equine herpesvirus-4 and physiological stress patterns in young Thoroughbreds consigned to a South African auction sale. BMC Vet Res 2015; 11:126. [PMID: 26033323 PMCID: PMC4450643 DOI: 10.1186/s12917-015-0443-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background The prevalence of equine herpesvirus types-1 and -4 (EHV-1 and -4) in South African Thoroughbreds at auction sales is currently undefined. Commingling of young Thoroughbreds from various populations together with physiological stress related to their transport and confinement at a sales complex, may be associated with shedding and transmission of EHV-1 and -4. This prospective cohort study sampled 90 young Thoroughbreds consigned from eight farms, originating from three provinces representative of the South African Thoroughbred breeding demographic to a sales complex. Nasal swabs for quantitative real-time polymerase chain reaction (qPCR) assay to detect EHV-1 and -4 nucleic acid and blood samples for enzyme-linked immunosorbent assay for EHV-1 and -4 antibodies were collected from all horses on arrival and departure. Additional nasal swabs for qPCR were obtained serially from those displaying pyrexia and, or nasal discharge. Daily faecal samples were used for determination of faecal glucocorticoid metabolite (FGM) concentrations as a measurement of physiological stress and these values were modelled to determine the factors best explaining FGM variability. Results EHV-4 nucleic acid was detected in 14.4 % and EHV-1 from none of the animals in the study population. Most (93.3 %) and very few (1.1 %) of this population showed antibodies indicating prior exposure to EHV-4 and EHV-1 respectively. Pyrexia and nasal discharge were poor predictors for detecting EHV-4 nucleic acid. The horses’ FGM concentrations increased following arrival before decreasing for most of the remaining study period including the auction process. Model averaging showed that variation in FGM concentrations was best explained by days post-arrival and transport duration. Conclusions In this study population, sales consignment was associated with limited detection of EHV-4 nucleic acid in nasal secretions, with most showing prior exposure to EHV-4 and very few to EHV-1. The physiological stress response shown by most reflected the combination of stressors associated with transport and arrival and these are key areas for future investigation into management practices to enhance health and welfare of young Thoroughbreds during sales consignment.
Collapse
Affiliation(s)
- Marcha Badenhorst
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Patrick Page
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Andre Ganswindt
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Peter Laver
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Alan Guthrie
- Equine Research Centre, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Martin Schulman
- Section of Reproduction, Department of Production Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| |
Collapse
|