1
|
Galinelli NC, Bamford NJ, Erdody ML, Mackenzie SA, Warnken T, Harris PA, Sillence MN, Bailey SR. Effect of pergolide treatment on insulin dysregulation in horses and ponies with pituitary pars intermedia dysfunction. Equine Vet J 2025. [PMID: 39967360 DOI: 10.1111/evj.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
BACKGROUND Due to the high frequency of laminitis reported for both conditions, the relationship between pituitary pars intermedia dysfunction (PPID) and insulin dysregulation (ID), and the potential role of dopamine in modifying insulin secretion, requires further investigation. OBJECTIVES To evaluate the effect of pergolide mesylate on insulin sensitivity and postprandial insulin and glucose responses in horses and ponies with ID, both with or without concurrent PPID. STUDY DESIGN Randomised crossover study. METHODS Sixteen horses and ponies, comprising eight matched pairs (PPID+ID or ID-only), were given pergolide mesylate at a dose of 2 μg/kg bwt orally once daily for 4 weeks (plus a 4-week non-treatment control period, with a 4-week washout between phases). A combined glucose and insulin tolerance test (CGIT) and a standard meal test (SMT; containing 1.1 g/kg bwt of starch and 0.1 g/kg bwt of free sugars), were performed before and after each treatment period to determine insulin sensitivity and postprandial insulin and glucose responses, respectively. Variables derived from the CGIT and SMT were analysed using linear mixed models. RESULTS Pergolide treatment did not alter any of the variables derived from the CGIT in either the PPID+ID or ID-only groups (all p > 0.05). For the SMT, insulin responses were reduced by pergolide treatment for the PPID+ID group, with Δ change values for the total area under the curve for insulin over 300 mins (estimated marginal mean [95% confidence interval]) being -25.4 (-39.9 to -7.3) min∙mIU/mL (p = 0.03) and Δ change values for peak insulin concentration being -100 (-167 to -29) μIU/mL (p = 0.04). No effect of pergolide treatment was detected for the ID-only group. MAIN LIMITATIONS Number of animals and heterogeneity among groups. CONCLUSIONS Pergolide had no effect on tissue insulin sensitivity. However, the results suggest that postprandial hyperinsulinaemia may be limited by this dopamine receptor agonist in animals with PPID plus ID.
Collapse
Affiliation(s)
- Nicolas C Galinelli
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Bamford
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Madison L Erdody
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Skye A Mackenzie
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Tobias Warnken
- Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany
| | - Patricia A Harris
- Equine Studies Group, Waltham Petcare Science Institute, Melton Mowbray, UK
| | - Martin N Sillence
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon R Bailey
- Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Sundra T, Kelty E, Rossi G, Rendle D. Retrospective assessment of the use of extended-release cabergoline in the management of equine pituitary pars intermedia dysfunction. Front Vet Sci 2024; 11:1332337. [PMID: 38511195 PMCID: PMC10951098 DOI: 10.3389/fvets.2024.1332337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Dopaminergic agonists are accepted as the most effective treatment for pituitary pars intermedia dysfunction. However, some horses are refractory to daily oral pergolide, the recommended registered treatment. Extended-release cabergoline (ERC) injection may offer an alternative. The objective of this retrospective case series was to describe clinical and endocrinological responses to ERC. Methods Medical records of horses treated with weekly intramuscular injections of ERC (5 mg/mL, BOVA Aus) at either 0.01 mg/kg (high dose, HD) (n = 10) or 0.005 mg/kg (low dose, LD) (n = 30) were reviewed. Short-term ACTH responses were assessed at 5-8 days using a Wilcoxon signed ranked test. Longer-term ACTH responses (30 to 365 days) were assessed using generalised estimating equations. Results Five to eight days after the first dose of LDERC, median adrenocorticotropic hormone (ACTH) concentration was lower (p = 0.001), changing from 153 pg/mL (IQR: 78, 331) to 57 pg/mL (IQR: 30, 102). With HDERC, median ACTH concentration was also 153 pg/mL (IQR: 96, 185) before and then 56 pg/mL (IQR: 29, 86) after 5-8 days of treatment (p = 0.047). Over 12 months of treatment, ACTH concentration ranged from 14 to >1,250 pg/mL (median: 51 pg/mL) in horses treated with LDERC and 20 to 472 pg/mL (median: 50 pg/mL) in horses treated with HDERC. Measurements remained above the seasonal reference range in 39.3 and 52.3% of horses treated with LDERC and HDERC, respectively. Clinical improvement was reported by owners in 78.3 and 100% of horses treated with LDERC and HDERC, respectively. Partial, self-limiting inappetence was reported in 30.0% of LDERC and 60% HDERC cases. Seven horses exhibited lethargy (5 LDERC, 2 HDERC). Insulin concentrations measured 30 days post-ERC treatment were no different from baseline. Discussion Clinical and endocrinological responses were consistent with results of previous reports of oral pergolide treatment. Weekly injection of ERC may be an effective alternative to pergolide; the 0.005 mg/kg dose appeared to be as effective, with less risk of inappetence, than the 0.01 mg/kg dose that has been reported previously.
Collapse
Affiliation(s)
- Tania Sundra
- Avon Ridge Equine Veterinary Services, Brigadoon, WA, Australia
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| | - Erin Kelty
- School of Population and Global Health, University of Western Australia, Crawley, WA, Australia
| | - Gabriele Rossi
- School of Veterinary Medicine, Murdoch University, Murdoch, WA, Australia
| | | |
Collapse
|
3
|
Menzies-Gow NJ, Banse HE, Duff A, Hart N, Ireland JL, Knowles EJ, McFarlane D, Rendle D. BEVA primary care clinical guidelines: Diagnosis and management of equine pituitary pars intermedia dysfunction. Equine Vet J 2024; 56:220-242. [PMID: 37795557 DOI: 10.1111/evj.14009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/19/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Pituitary pars intermedia dysfunction (PPID) is a prevalent, age-related chronic disorder in equids. Diagnosis of PPID can be challenging because of its broad spectrum of clinical presentations and disparate published diagnostic criteria, and there are limited available treatment options. OBJECTIVES To develop evidence-based primary care guidelines for the diagnosis and treatment of equine PPID based on the available literature. STUDY DESIGN Evidence-based clinical guideline using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) framework. METHODS Research questions were proposed by a panel of veterinarians and developed into PICO or another structured format. VetSRev and Veterinary Evidence were searched for evidence summaries, and systematic searches of the NCBI PubMed and CAB Direct databases were conducted using keyword searches in July 2022 and updated in January 2023. The evidence was evaluated using the GRADE framework. RESULTS AND RECOMMENDATIONS The research questions were categorised into four areas: (A) Case selection for diagnostic testing, pre-test probability and diagnostic test accuracy, (B) interpretation of test results, (C) pharmacological treatments and other treatment/management options and (D) monitoring treated cases. Relevant veterinary publications were identified and assessed using the GRADE criteria. The results were developed into recommendations: (A) Case selection for diagnostic testing and diagnostic test accuracy: (i) The prevalence of PPID in equids aged ≥15 years is between 21% and 27%; (ii) hypertrichosis or delayed/incomplete hair coat shedding provides a high index of clinical suspicion for PPID; (iii) the combination of clinical signs and age informs the index of clinical suspicion prior to diagnostic testing; (iv) estimated pre-test probability of PPID should be considered in interpretation of diagnostic test results; (v) pre-test probability of PPID is low in equids aged <10 years; (vi) both pre-test probability of disease and season of testing have strong influence on the ability to diagnose PPID using basal adrenocorticotropic hormone (ACTH) or ACTH after thyrotropin-releasing hormone (TRH) stimulation. The overall diagnostic accuracy of basal ACTH concentrations for diagnosing PPID ranged between 88% and 92% in the autumn and 70% and 86% in the non-autumn, depending on the pre-test probability. Based on a single study, the overall diagnostic accuracy of ACTH concentrations in response to TRH after 30 minutes for diagnosing PPID ranged between 92% and 98% in the autumn and 90% and 94% in the non-autumn, depending on the pre-test probability. Thus, it should be remembered that the risk of a false positive result increases in situations where there is a low pre-test probability, which could mean that treatment is initiated for PPID without checking for a more likely alternative diagnosis. This could compromise horse welfare due to the commencement of lifelong therapy and/or failing to identify and treat an alternative potentially life-threatening condition. (B) Interpretation of diagnostic tests: (i) There is a significant effect of breed on plasma ACTH concentration, particularly in the autumn with markedly higher ACTH concentrations in some but not all 'thrifty' breeds; (ii) basal and/or post-TRH ACTH concentrations may also be affected by latitude/location, diet/feeding, coat colour, critical illness and trailer transport; (iii) mild pain is unlikely to have a large effect on basal ACTH, but caution may be required for more severe pain; (iv) determining diagnostic thresholds that allow for all possible contributory factors is not practical; therefore, the use of equivocal ranges is supported; (v) dynamic insulin testing and TRH stimulation testing may be combined, but TRH stimulation testing should not immediately follow an oral sugar test; (vi) equids with PPID and hyperinsulinaemia appear to be at higher risk of laminitis, but ACTH is not an independent predictor of laminitis risk. (C) Pharmacologic treatments and other treatment/management options: (i) Pergolide improves most clinical signs associated with PPID in the majority of affected animals; (ii) Pergolide treatment lowers basal ACTH concentrations and improves the ACTH response to TRH in many animals, but measures of insulin dysregulation (ID) are not altered in most cases; (iii) chasteberry has no effect on ACTH concentrations and there is no benefit to adding chasteberry to pergolide therapy; (iv) combination of cyproheptadine with pergolide is not superior to pergolide alone; (v) there is no evidence that pergolide has adverse cardiac effects in horses; (vi) Pergolide does not affect insulin sensitivity. (D) Monitoring pergolide-treated cases: (i) Hormone assays provide a crude indication of pituitary control in response to pergolide therapy, however it is unknown whether monitoring of ACTH concentrations and titrating of pergolide doses accordingly is associated with improved endocrinological or clinical outcome; (ii) it is unknown whether monitoring the ACTH response to TRH or clinical signs is associated with an improved outcome; (iii) there is very weak evidence to suggest that increasing pergolide dose in autumn months may be beneficial; (iv) there is little advantage in waiting for more than a month to perform follow-up endocrine testing following initiation of pergolide therapy; there may be merit in performing repeat tests sooner; (v) timing of sampling in relation to pergolide dosing does not confound measurement of ACTH concentration; (vi) there is no evidence that making changes after interpretation of ACTH concentrations measured at certain times of the year is associated with improved outcomes; (vii) evidence is very limited, however, compliance with PPID treatment appears to be poor and it is unclear whether this influences clinical outcome; (viii) evidence is very limited, but horses with clinical signs of PPID are likely to shed more nematode eggs than horses without clinical signs of PPID; it is unclear whether this results in an increased risk of parasitic disease or whether there is a need for more frequent assessment of faecal worm egg counts. MAIN LIMITATIONS Limited relevant publications in the veterinary scientific literature. CONCLUSIONS These findings should be used to inform decision-making in equine primary care practice.
Collapse
Affiliation(s)
| | - Heidi E Banse
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Aimi Duff
- Rainbow Equine Hospital, North Yorkshire, UK
| | | | - Joanne L Ireland
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Wirral, UK
| | | | - Dianne McFarlane
- College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
4
|
Loos CMM, Urschel KL, Vanzant ES, Oberhaus EL, Bohannan AD, Klotz JL, McLeod KR. Effects of Bromocriptine on Glucose and Insulin Dynamics in Normal and Insulin Dysregulated Horses. Front Vet Sci 2022; 9:889888. [PMID: 35711802 PMCID: PMC9194999 DOI: 10.3389/fvets.2022.889888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
The objectives of the study were to study the effects of the synthetic ergot alkaloid (EA), bromocriptine, on glucose and lipid metabolism in insulin dysregulated (ID, n = 7) and non-ID (n = 8) mares. Horses were individually housed and fed timothy grass hay and two daily concentrate meals so that the total diet provided 120% of daily DE requirements for maintenance. All horses were given intramuscular bromocriptine injections (0.1 mg/kg BW) every 3 days for 14 days. Before and after 14 days of treatment horses underwent a combined glucose-insulin tolerance test (CGIT) to assess insulin sensitivity and a feed challenge (1 g starch/kg BW from whole oats) to evaluate postprandial glycemic and insulinemic responses. ID horses had higher basal plasma concentrations of insulin (P = 0.01) and triglycerides (P = 0.02), and lower concentrations of adiponectin (P = 0.05) compared with non-ID horses. The CGIT response curve showed that ID horses had slower glucose clearance rates (P = 0.02) resulting in a longer time in positive phase (P = 0.03) and had higher insulin concentrations at 75 min (P = 0.0002) compared with non-ID horses. Glucose (P = 0.02) and insulin (P = 0.04) responses to the feeding challenge were lower in non-ID compared to ID horses. Regardless of insulin status, bromocriptine administration increased hay intake (P = 0.03) and decreased grain (P < 0.0001) and total DE (P = 0.0002) intake. Bromocriptine treatment decreased plasma prolactin (P = 0.0002) and cholesterol (P = 0.10) and increased (P = 0.02) adiponectin concentrations in all horses. Moreover, in both groups of horses, bromocriptine decreased glucose clearance rates (P = 0.02), increased time in positive phase (P = 0.04) of the CGIT and increased insulin concentrations at 75 min (P = 0.001). The postprandial glycemic (P = 0.01) and insulinemic (P = 0.001) response following the oats meal was lower after bromocriptine treatment in all horses. In conclusion, in contrast to data in humans and rodents, bromocriptine treatment reduced insulin sensitivity in all horses, regardless of their insulin status. These results indicate that the physiological effects of EA might be different in horses compared to other species. Moreover, because bromocriptine shares a high degree of homology with natural EA, further investigation is warranted in horses grazing endophyte-infected grasses.
Collapse
Affiliation(s)
- Caroline M M Loos
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Kristine L Urschel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Eric S Vanzant
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Erin L Oberhaus
- School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Adam D Bohannan
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - James L Klotz
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY, United States
| | - Kyle R McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
5
|
Durham AE. The effect of pergolide mesylate on adrenocorticotrophic hormone responses to exogenous thyrotropin releasing hormone in horses. Vet J 2022; 285:105831. [PMID: 35477010 DOI: 10.1016/j.tvjl.2022.105831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Thyrotropin releasing hormone (TRH) stimulation testing is often used to support a diagnosis of pituitary pars intermedia dysfunction (PPID) in horses although it is unclear whether or not repeat TRH stimulation testing post-treatment is a valid means of assessing response to medical therapy. Laboratory submissions from 64 suspected equine PPID cases were examined including the initial pre-treatment TRH stimulation test and a follow up test within 100 days of starting medical therapy with pergolide. In a subset of cases, further follow-up tests were examined beyond 100 days of starting treatment. Results from tests conducted between 1 July and 30 November 30 were excluded. Significant improvements were seen in both the baseline and TRH-stimulated adrenocorticotrophic hormone (ACTH) concentrations within 100 days with no further improvements seen in the subset of cases examined thereafter. Although 88% (n=56/64) of all cases showed a decreased response to TRH post-treatment, only 24% (n=9/38) of horses with positive pre-treatment TRH stimulation tests normalised following treatment, with a further 34% (n=13/38) improving into an equivocal test outcome category. Most commonly (42%; n=16/38), horses with positive pre-treatment TRH stimulation tests remained positive following treatment, although 75% (n=12/16) of these showed a numerically lower post-treatment response to TRH. These results will help inform practitioners of expected changes in TRH stimulation test results when assessing response of horses with PPID to medical therapy with pergolide.
Collapse
Affiliation(s)
- A E Durham
- Liphook Equine Hospital, Liphook, Hampshire GU30 7JG, UK.
| |
Collapse
|
6
|
Gehlen H, Fisch J, Merle R, Trachsel DS. Preliminary study on the effects of pergolide on left ventricular function in the horses with pituitary pars intermedia dysfunction. J Vet Sci 2021; 22:e64. [PMID: 34553515 PMCID: PMC8460455 DOI: 10.4142/jvs.2021.22.e64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Pituitary pars intermedia dysfunction (PPID), a neurodegenerative disease leading to reduced dopamine production, is a common disease in aged horses. The treatment is based on administration of the dopamine agonist pergolide. This drug has been related to valvular fibrosis in humans, but the cardiovascular effect of this drug has not yet been investigated in horses. OBJECTIVES To determine whether pergolide induces valvular disease in horses or affects the cardiac function. METHODS Standard, tissue Doppler (TDE) and two-dimensional speckle tracking (STE) echocardiography were performed in horses with diagnosed PPID based on adrenocorticotropic hormone dosage. Measurements taken in horses treated with pergolide were compared with those from untreated horses with nonparametric t-tests. Furthermore, measurements from follow-up examinations performed at least three months after the initial exam were compared with a Wilcoxon signed rank test for repeated measurements in each group. RESULTS Twenty-three horses were included. None of the 12 horses under treatment developed valvular regurgitation. Furthermore, no differences in the measurements of the left ventricular systolic or diastolic function could be seen between the group of horses with treatment and those without treatment. Measurements taken in the follow-up exam did not differ compared to those taken in the initial exam in both groups. CONCLUSIONS No changes of the left ventricular function assessed by TDE and STE could be shown in a small population of horses with confirmed PPID. Treatment with pergolide did not affect the ventricular function nor induce valvular disease.
Collapse
Affiliation(s)
- Heidrun Gehlen
- Department of Veterinary Medicine, Equine Clinic: Surgery and Radiology, Freie University Berlin, Berlin 14163, Germany
| | - Judith Fisch
- Department of Veterinary Medicine, Equine Clinic: Surgery and Radiology, Freie University Berlin, Berlin 14163, Germany
| | - Roswitha Merle
- Department of Veterinary Medicine, Institute for Veterinary Epidemiology and Biostatistics, Freie University Berlin, Berlin 14163, Germany
| | - Dagmar S Trachsel
- Department of Veterinary Medicine, Equine Clinic: Surgery and Radiology, Freie University Berlin, Berlin 14163, Germany.
| |
Collapse
|
7
|
Banse HE, Whitehead AE, McFarlane D, Chelikani PK. Markers of muscle atrophy and impact of treatment with pergolide in horses with pituitary pars intermedia dysfunction and muscle atrophy. Domest Anim Endocrinol 2021; 76:106620. [PMID: 33740552 DOI: 10.1016/j.domaniend.2021.106620] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Pituitary pars intermedia dysfunction (PPID) is a common endocrine disorder of aged horses, with muscle atrophy as one of the clinical signs. We sought to compare muscle mass and regulation of skeletal muscle proteolysis between horses with PPID and muscle atrophy to older horses without PPID, and to assess the impact of treatment with pergolide (dopaminergic agonist) on PPID horses. We hypothesized that PPID-associated muscle atrophy is a result of increased proteolysis, and that markers of muscle atrophy and proteolysis would improve over time with pergolide treatment. Markers of muscle atrophy, adiposity, insulin regulation, skeletal muscle composition, and proteolysis (muscle atrophy F- box/atrogin 1 [MAFbx1], muscle RING finger 1 [MuRF1], Bcl2/adenovirus EIV 19kD interacting protein 3 [Bnip3], and microtubule-associated light chain 3 [LC3]) were compared between PPID and control horses. PPID horses were treated for 12 weeks with either pergolide or placebo. Dose of pergolide was adjusted based upon monthly measurement of adrenocorticotropin, and markers of muscle atrophy, adiposity, insulin regulation, skeletal muscle composition, and proteolysis were compared after 12 weeks of treatment. Horses with PPID exhibited increased transcript abundance of MuRF1 (P= 0.04) compared to control. However, no difference was observed in transcript abundance of markers of proteolysis with treatment (P ≥ 0.25). Pergolide treated horses lost weight (P = 0.02) and improved fasting insulin (P = 0.02), while placebo treated horses gained weight and rump fat thickness (P = 0.02). Findings from this study suggest that treatment with pergolide may promote weight loss and improve insulin regulation in horses with PPID, but does not impact muscle mass or markers of muscle proteolysis.
Collapse
Affiliation(s)
- H E Banse
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - A E Whitehead
- Department of Veterinary and Clinical Diagnostic Sciences, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - D McFarlane
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - P K Chelikani
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA
| |
Collapse
|
8
|
Miller AB, Loynachan AT, Bush HM, Hart KA, Barker VD, Campana-Emard AG, Grubbs ST, Adams AA. Effects of pituitary pars intermedia dysfunction and Prascend (pergolide tablets) treatment on endocrine and immune function in horses. Domest Anim Endocrinol 2021; 74:106531. [PMID: 32942194 DOI: 10.1016/j.domaniend.2020.106531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/19/2020] [Accepted: 07/24/2020] [Indexed: 11/24/2022]
Abstract
It remains unclear how pituitary pars intermedia dysfunction (PPID) and pergolide treatment (Prascend [pergolide tablets]) affect endocrine and immune function in horses. To evaluate these effects, blood was collected regularly from 28 university-owned horses (10 Non-PPID, 9 PPID control [PC], and 9 PPID treatment [PT]) over approximately 15 mo. Pergolide treatment was initiated after Day 0 collections. Analyses included ACTH, insulin, total cortisol, free cortisol, complete blood counts, plasma myeloperoxidase, and cytokine/receptor gene expression in basal whole blood and in vitro stimulations (PMA/ionomycin, heat-inactivated Rhodococcus equi, and heat-inactivated Escherichia coli) of whole blood and peripheral blood mononuclear cells (PBMCs). The results were analyzed using a linear mixed model (SAS 9.4) with significance set at P < 0.05. Significant group (P = 0.0014) and group-by-time (P = 0.0004) effects were observed in resting ACTH such that PT horses differed from Non-PPID horses only at Day 0. PT horses had significantly lower changes in ACTH responses to thyrotropin-releasing hormone stimulation tests than PC horses at non-fall time points only, mid-late February 2018 (P = 0.016) and early April 2018 (P = 0.0172). When PT and PC horses did not differ, they were combined before comparison to Non-PPID horses. No significant group or group-by-time effects were seen in resting insulin, total cortisol, or free cortisol; however, significant time effects were observed in these measures. PPID horses had lower absolute lymphocyte (P = 0.028) and red blood cell (P = 0.0203) counts than Non-PPID horses. In unstimulated whole blood, PPID horses had increased IL-8 expression compared with Non-PPID horses (P = 0.0102). In addition, PPID horses had decreased interferon γ production from PBMCs after stimulation with R. equi (P = 0.0063) and E. coli (P = 0.0057) and showed increased transforming growth factor β expression after E. coli stimulation (P = 0.0399). The main limitations of this study were a limited sample size and an inability to truly randomize the PPID horses into treatment groups. Resting ACTH is likely the best choice for determining successful responses to pergolide. Neither PPID nor pergolide appears to influence insulin, total cortisol, and free cortisol. As measured, systemic immune function was altered in PPID horses, and it is likely that these horses are indeed at increased risk of opportunistic infection. Despite reducing ACTH, pergolide treatment did not appear to influence immune function.
Collapse
Affiliation(s)
- A B Miller
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | - A T Loynachan
- Veterinary Diagnostic Laboratory, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - H M Bush
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - K A Hart
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - V D Barker
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - A G Campana-Emard
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - S T Grubbs
- Boehringer Ingelheim Animal Health USA, Inc, Duluth, GA, USA
| | - A A Adams
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
9
|
Tatum RC, McGowan CM, Ireland JL. Efficacy of pergolide for the management of equine pituitary pars intermedia dysfunction: A systematic review. Vet J 2020; 266:105562. [PMID: 33323174 DOI: 10.1016/j.tvjl.2020.105562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 11/26/2022]
Abstract
Pergolide, a dopamine agonist, is commonly administered to manage pituitary pars intermedia dysfunction (PPID), a progressive neurodegenerative disease prevalent in aged horses. However, available evidence regarding pergolide's efficacy in improving clinical and endocrine parameters is limited. The aim of this systematic review was to assess published literature and evaluate evidence regarding whether pergolide treatment results in improvement of clinical signs and/or adrenocorticotrophic hormone (ACTH) concentration compared to no treatment or other unlicensed treatments. Systematic searches of electronic databases were undertaken in April 2019, repeated in August and October 2019, and updated in July 2020. English language publications published prior to these dates were included. Screening, data extraction and quality assessment of publications was undertaken individually by the authors using predefined criteria and subsequently cross-checked. Modified critically appraised topic data collection forms were used to extract data. Due to marked between-study variations, meta-analysis was not undertaken. After removal of duplicate records; 612 publications were identified, of which 129 abstracts were screened for eligibility and 28 publications met criteria for inclusion in the review. Most studies were descriptive case series, cohort studies or non-randomised, uncontrolled field trials. Despite marked variation in study populations, case selection, diagnostic protocols, pergolide dose, follow-up period and outcome measures, in the vast majority of the included studies, pergolide was reported to provide overall clinical improvement in >75% of cases. However, reported improvements in individual clinical signs varied widely. A reduction in plasma ACTH concentrations was reported in 44-74% of cases, while normalisation to within reported reference intervals occurred in 28-74% of cases.
Collapse
Affiliation(s)
- R C Tatum
- Institute of Aging and Chronic Disease, Faculty of Health and Life Sciences, The University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - C M McGowan
- Institute of Aging and Chronic Disease, Faculty of Health and Life Sciences, The University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK; Institute of Veterinary Science, Faculty of Health and Life Sciences, The University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK
| | - J L Ireland
- Institute of Aging and Chronic Disease, Faculty of Health and Life Sciences, The University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK; Institute of Veterinary Science, Faculty of Health and Life Sciences, The University of Liverpool, Leahurst Campus, Neston, Cheshire CH64 7TE, UK.
| |
Collapse
|
10
|
Secombe CJ, Bailey SR, de Laat MA, Hughes KJ, Stewart AJ, Sonis JM, Tan RHH. Equine pituitary pars intermedia dysfunction: current understanding and recommendations from the Australian and New Zealand Equine Endocrine Group. Aust Vet J 2018; 96:233-242. [DOI: 10.1111/avj.12716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/29/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022]
Affiliation(s)
- CJ Secombe
- College of Veterinary Medicine, School of Veterinary and Life Sciences; Murdoch University; Murdoch Western Australia Australia
| | - SR Bailey
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences; The University of Melbourne; Werribee VIC Australia
| | - MA de Laat
- Science and Engineering Faculty; Queensland University of Technology; Brisbane QLD Australia
| | - KJ Hughes
- School of Animal and Veterinary Sciences; Charles Sturt University; Wagga Wagga NSW Australia
| | - AJ Stewart
- Equine Specialist Hospital, School of Veterinary Science; The University of Queensland; Gatton QLD Australia
| | - JM Sonis
- Veterinary Associates Equine and Farm, Karaka; Auckland New Zealand
| | - RHH Tan
- Samford Valley Veterinary Hospital; Samford, QLD Australia
- Discipline of Veterinary Clinical Sciences, College of Public Health, Medical and Veterinary Sciences; James Cook University; Townsville QLD Australia
| |
Collapse
|
11
|
Roberts K, Hemmings AJ, McBride SD, Parker MO. Developing a 3-choice serial reaction time task for examining neural and cognitive function in an equine model. J Neurosci Methods 2017; 292:45-52. [PMID: 28179180 DOI: 10.1016/j.jneumeth.2017.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Large animal models of human neurological disorders are advantageous compared to rodent models due to their neuroanatomical complexity, longevity and their ability to be maintained in naturalised environments. Some large animal models spontaneously develop behaviours that closely resemble the symptoms of neural and psychiatric disorders. The horse is an example of this; the domestic form of this species consistently develops spontaneous stereotypic behaviours akin to the compulsive and impulsive behaviours observed in human neurological disorders such as Tourette's syndrome. The ability to non-invasively probe normal and abnormal equine brain function through cognitive testing may provide an extremely useful methodological tool to assess brain changes associated with certain human neurological and psychiatric conditions. NEW METHOD An automated operant system with the ability to present visual and auditory stimuli as well as dispense salient food reward was developed. To validate the system, ten horses were trained and tested using a standard cognitive task (three choice serial reaction time task (3-CSRTT)). RESULTS All animals achieved total learning criterion and performed six probe sessions. Learning criterion was met within 16.30±0.79 sessions over a three day period. During six probe sessions, level of performance was maintained at 80.67±0.57% (mean±SEM) accuracy. COMPARISON WITH EXISTING METHOD(S) This is the first mobile fully automated system developed to examine cognitive function in the horse. CONCLUSIONS A fully-automated operant system for mobile cognitive function of a large animal model has been designed and validated. Horses pose an interesting complementary model to rodents for the examination of human neurological dysfunction.
Collapse
Affiliation(s)
- Kirsty Roberts
- Royal Agricultural University, Stroud Road, Cirencester, Gloucestershire GL7 6JS, United Kingdom.
| | - Andrew J Hemmings
- Royal Agricultural University, Stroud Road, Cirencester, Gloucestershire GL7 6JS, United Kingdom
| | - Sebastian D McBride
- Aberystwyth University, Penglais, Aberystwyth, Ceredigion SY23 3DA, United Kingdom
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth, James Watson West Building, 2 King Richard 1 st Road, Portsmouth, Hampshire PO1 2FR, United Kingdom
| |
Collapse
|