1
|
Gonzalez-Obando J, Forero JE, Zuluaga-Cabrera AM, Ruiz-Saenz J. Equine Influenza Virus: An Old Known Enemy in the Americas. Vaccines (Basel) 2022; 10:vaccines10101718. [PMID: 36298583 PMCID: PMC9610386 DOI: 10.3390/vaccines10101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Equine influenza is a highly contagious disease caused by the H3N8 equine influenza virus (EIV), which is endemically distributed throughout the world. It infects equids, and interspecies transmission to dogs has been reported. The H3N8 Florida lineage, which is divided into clades 1 and 2, is the most representative lineage in the Americas. The EIV infects the respiratory system, affecting the ciliated epithelial cells and preventing the elimination of foreign bodies and substances. Certain factors related to the disease, such as an outdated vaccination plan, age, training, and close contact with other animals, favor the presentation of equine influenza. This review focuses on the molecular, pathophysiological, and epidemiological characteristics of EIV in the Americas to present updated information to achieve prevention and control of the virus. We also discuss the need for monitoring the disease, the use of vaccines, and the appropriate application of those biologicals, among other biosecurity measures that are important for the control of the virus.
Collapse
Affiliation(s)
- Juliana Gonzalez-Obando
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia
| | - Jorge Eduardo Forero
- Grupo de Investigación en Microbiología Veterinaria, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Angélica M Zuluaga-Cabrera
- Facultad de Medicina Veterinaria y Zootecnia, Fundación Universitaria Autónoma de las Américas, Circular 73 N°35-04, Medellín 050010, Colombia
| | - Julián Ruiz-Saenz
- Grupo de Investigación en Ciencias Animales—GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga 680002, Colombia
- Correspondence:
| |
Collapse
|
2
|
Seroprevalence of Equine Herpesvirus 1 (EHV-1) and Equine Herpesvirus 4 (EHV-4) in the Northern Moroccan Horse Populations. Animals (Basel) 2021; 11:ani11102851. [PMID: 34679874 PMCID: PMC8532652 DOI: 10.3390/ani11102851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary This work aims to evaluate the seroprevalence of equine EHV-1/4 in horse populations in the north of Morocco and to measure the antibody titers in vaccinated horses, under field conditions, with monovalent EHV-1 vaccines. Overall, 12.8% unvaccinated, and 21.8% vaccinated horses were positive for EHV-1. All samples were positive for EHV-4 when tested with the type-specific ELISA. The virus neutralization test showed low antibody titers in samples from vaccinated horses. Our study demonstrated that EHV-1 and EHV-4 are endemic in the horse populations in the north of Morocco and highlighted the necessity of reevaluating the vaccines and the vaccination protocol used. Abstract This study reports the first equine herpesvirus-1 (EHV-1) and equine herpesvirus-4 (EHV-4) seroprevalence investigation in horse populations of Morocco in 24 years. It also aims to determine antibody titers in horses vaccinated under field conditions with a monovalent EHV-1 vaccine. Blood samples were collected from 405 horses, including 163 unvaccinated and 242 vaccinated animals. They were tested using a commercial type-specific enzyme-linked immunosorbent assay (ELISA) and a virus neutralization test (VNT). Overall, 12.8% unvaccinated, and 21.8% vaccinated horses were positive for EHV-1. All samples were positive for EHV-4 when tested with the type-specific ELISA. In the vaccinated group, the VNT revealed a mean antibody titer of 1:49 for EHV-1 and 1:45 for EHV-4. The present study demonstrates that EHV-1 and EHV-4 are endemic in the horse populations in the north of Morocco, with prevalence differences between regions. Furthermore, horses vaccinated with a monovalent EHV-1 vaccine had low antibodies titers. This study highlights the necessity to establish and/or support efficient biosecurity strategies based on sound management of horses and characterize further and potentially improve the efficiency of the EHV vaccines and vaccination protocol used in the field.
Collapse
|
3
|
Equine Influenza Virus and Vaccines. Viruses 2021; 13:v13081657. [PMID: 34452521 PMCID: PMC8402878 DOI: 10.3390/v13081657] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.
Collapse
|
4
|
Equid Herpesvirus 8 Isolated From an Adult Donkey in Israel. J Equine Vet Sci 2020; 94:103247. [PMID: 33077102 DOI: 10.1016/j.jevs.2020.103247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/02/2020] [Accepted: 08/31/2020] [Indexed: 11/23/2022]
Abstract
We report the isolation of Equid herpesvirus 8 from a rescued donkey that suffered severe postcastration complications. Despite intensive treatment, the donkey deteriorated and was euthanized. Postmortem virologic analysis revealed the isolation of a herpesvirus that is closely related to herpesviruses reported from donkeys and horses in Australia, China, and Ireland, causing respiratory disease in donkeys and abortion in mares. To our knowledge, this is the first report of this equid herpesvirus in Israel. The potential significance of this herpesvirus to the equid population in Israel needs further investigation.
Collapse
|
5
|
Jurado-Tarifa E, Daly JM, Pérez-Écija A, Barba-Recreo M, Mendoza FJ, Al-Shuwaikh AM, García-Bocanegra I. Epidemiological survey of equine influenza in Andalusia, Spain. Prev Vet Med 2018; 151:52-56. [PMID: 29496107 DOI: 10.1016/j.prevetmed.2018.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/05/2018] [Accepted: 01/05/2018] [Indexed: 11/18/2022]
Abstract
Equine influenza is a highly contagious respiratory disease considered the most important respiratory disease in equids. Although influenza A virus (IAV) has caused outbreaks in equids worldwide, surveillance in these species in Spain has not been conducted. A cross-sectional study was carried out to determine the individual and herd prevalence of antibodies against H3N8 and H7N7 IAV in equids in Andalusia (southern Spain). Antibodies againsts IAV were measured by the single radial haemolysis assay. A spatial scan statistical analysis was carried out using a Bernoulli model. Risk factors associated with IAV infection were assessed by multivariate analysis. Antibodies to H3N8 IAV were detected in 241 out of 464 unvaccinated equids (51.9%; 95% CI: 47.4-56.5). Seropositivity against the H7N7 subtype IAV was not found in any of the analysed animals. Significantly higher seropositivity was found in geriatric (OR = 6.1, P = 0.008, 95% CI = 1.6-23.1) and adult (OR = 4.8, P < 0.001, 95% CI = 2.5-9.0) equids compared to young animals. Specific antibodies against A/equine/Shropshire/2010 (H3N8) or A/equine/Newmarket/5/2003 (H3N8) only were confirmed in 11 and 45 of the animals, respectively. The spatial analysis showed a statistically significant cluster centred in the west part of Andalusia. The results confirmed widespread H3N8 subtype IAV exposure in equine species in Andalusia. Conversely, the absence of seropositivity against H7N7 IAV obtained in the present study suggests that this subtype has not circulated in southern Spain in recent years. Because of the animal health and economic consequences of IAV in equids, further surveillance and molecular studies are required to monitor and characterize the most prevalent IAV circulating in these species in Spain.
Collapse
Affiliation(s)
- E Jurado-Tarifa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - J M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - A Pérez-Écija
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain.
| | - M Barba-Recreo
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK; Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - F J Mendoza
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| | - A M Al-Shuwaikh
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK; Microbiology Department, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - I García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba-Agrifood Excellence International Campus (ceiA3), Córdoba, Spain
| |
Collapse
|
6
|
Pusterla N, Bain F, James K, Mapes S, Kenelty K, Barnett DC, Gaughan E, Craig B, Chappell DE, Vaala W. Frequency of molecular detection of equine herpesvirus-4 in nasal secretions of 3028 horses with upper airway infection. Vet Rec 2017; 180:593. [DOI: 10.1136/vr.104240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 11/04/2022]
Affiliation(s)
- N. Pusterla
- Department of Medicine and Epidemiology; School of Veterinary Medicine, University of California; Davis California USA
| | - F. Bain
- Merck Animal Health; Summit, New Jersey USA
| | - K. James
- Department of Medicine and Epidemiology; School of Veterinary Medicine, University of California; Davis California USA
| | - S. Mapes
- Department of Medicine and Epidemiology; School of Veterinary Medicine, University of California; Davis California USA
| | - K. Kenelty
- Department of Medicine and Epidemiology; School of Veterinary Medicine, University of California; Davis California USA
| | | | - E. Gaughan
- Merck Animal Health; Summit, New Jersey USA
| | - B. Craig
- Merck Animal Health; Summit, New Jersey USA
| | | | - W. Vaala
- Merck Animal Health; Summit, New Jersey USA
| |
Collapse
|
7
|
|
8
|
Kinsley R, Scott SD, Daly JM. Controlling equine influenza: Traditional to next generation serological assays. Vet Microbiol 2016; 187:15-20. [PMID: 27066704 DOI: 10.1016/j.vetmic.2016.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/29/2016] [Accepted: 03/08/2016] [Indexed: 01/20/2023]
Abstract
Serological assays provide an indirect route for the recognition of infectious agents via the detection of antibodies against the infectious agent of interest within serum. Serological assays for equine influenza A virus can be applied for different purposes: diagnosing infections; subtyping isolates; surveillance of circulating strains; and to evaluate the efficacy of vaccines before they reach the market. Haemagglutination inhibition (HI) and single radial haemolysis (SRH) assays are most commonly used in the equine field. This review outlines how both these assays together with virus neutralization (VN) and ELISA are performed, interpreted and applied for the control of equine influenza, giving the limitations and advantages of each. The pseudotyped virus neutralization assay (PVNA) is also discussed as a promising prospect for the future of equine influenza virus serology.
Collapse
Affiliation(s)
- Rebecca Kinsley
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime ME4 4TB, UK.
| | - Simon D Scott
- Viral Pseudotype Unit, School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime ME4 4TB, UK.
| | - Janet M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, UK.
| |
Collapse
|
9
|
Badenhorst M, Page P, Ganswindt A, Laver P, Guthrie A, Schulman M. Detection of equine herpesvirus-4 and physiological stress patterns in young Thoroughbreds consigned to a South African auction sale. BMC Vet Res 2015; 11:126. [PMID: 26033323 PMCID: PMC4450643 DOI: 10.1186/s12917-015-0443-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 05/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background The prevalence of equine herpesvirus types-1 and -4 (EHV-1 and -4) in South African Thoroughbreds at auction sales is currently undefined. Commingling of young Thoroughbreds from various populations together with physiological stress related to their transport and confinement at a sales complex, may be associated with shedding and transmission of EHV-1 and -4. This prospective cohort study sampled 90 young Thoroughbreds consigned from eight farms, originating from three provinces representative of the South African Thoroughbred breeding demographic to a sales complex. Nasal swabs for quantitative real-time polymerase chain reaction (qPCR) assay to detect EHV-1 and -4 nucleic acid and blood samples for enzyme-linked immunosorbent assay for EHV-1 and -4 antibodies were collected from all horses on arrival and departure. Additional nasal swabs for qPCR were obtained serially from those displaying pyrexia and, or nasal discharge. Daily faecal samples were used for determination of faecal glucocorticoid metabolite (FGM) concentrations as a measurement of physiological stress and these values were modelled to determine the factors best explaining FGM variability. Results EHV-4 nucleic acid was detected in 14.4 % and EHV-1 from none of the animals in the study population. Most (93.3 %) and very few (1.1 %) of this population showed antibodies indicating prior exposure to EHV-4 and EHV-1 respectively. Pyrexia and nasal discharge were poor predictors for detecting EHV-4 nucleic acid. The horses’ FGM concentrations increased following arrival before decreasing for most of the remaining study period including the auction process. Model averaging showed that variation in FGM concentrations was best explained by days post-arrival and transport duration. Conclusions In this study population, sales consignment was associated with limited detection of EHV-4 nucleic acid in nasal secretions, with most showing prior exposure to EHV-4 and very few to EHV-1. The physiological stress response shown by most reflected the combination of stressors associated with transport and arrival and these are key areas for future investigation into management practices to enhance health and welfare of young Thoroughbreds during sales consignment.
Collapse
Affiliation(s)
- Marcha Badenhorst
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Patrick Page
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Andre Ganswindt
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Peter Laver
- Department of Anatomy and Physiology, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Alan Guthrie
- Equine Research Centre, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| | - Martin Schulman
- Section of Reproduction, Department of Production Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Private Bag XO4, Onderstepoort, 0110, South Africa.
| |
Collapse
|