1
|
Tsai SY, Liu YM, Lin ZW, Lin CP. Antimicrobial activity effects of electrolytically generated hypochlorous acid-treated pathogenic microorganisms by isothermal kinetic simulation. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 2022; 148:1613-1627. [PMID: 36338804 PMCID: PMC9628503 DOI: 10.1007/s10973-022-11727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This study involves isothermal kinetic simulation to evaluate the parameters of inhibition conditions for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) of high-risk pathogens. This is because the new type of the 2019 novel coronavirus (2019-nCoV) is continuously spreading and the importance of public health issues. Environmental disinfection and personal wearing of masks have become important epidemic prevention measures. Selection of concentration kinetics could be estimated best for E. coli and S. aureus of pathogens, 2.74 × 104 and 105 and 2.44 × 104 and 105 colony-forming units (CFU mL-1), by isothermal micro-calorimeter (TAM Air) tests, respectively. Comparisons were made of different doses of 0-70 ppm (in 20 mL test ampoule) hypochlorous acid treatment for conducting nth-order and autocatalytic reaction simulation to evaluate the inhibition reaction parameters, which determined the autocatalytic kinetic model that was beneficially applied on the E. coli and S. aureus. We developed the inhibition reaction parameters of the pathogens, which included the activation energy (E a), the natural logarithm of pre-exponential factor (lnk 0), the enthalpy of inhibition microbial growth reaction (∆H), inhibition microbial growth, and the inhibition growth analysis. Overall, we conducted isothermal kinetic simulation to understand the antimicrobial activity effects of electrolytically generated hypochlorous acid-treated pathogenic microorganisms, which will provide reference for public health and medical-related fields for SDG3, and can contribute to ensuring human health and hygiene.
Collapse
Affiliation(s)
- Shu-Yao Tsai
- Department of Biotechnology, National Formosa University, 64, Wunhua Rd., Huwei Township, Yunlin County, 632301 Taiwan
| | - Yu-Ming Liu
- Department of Biotechnology, National Formosa University, 64, Wunhua Rd., Huwei Township, Yunlin County, 632301 Taiwan
| | - Zhi-Wei Lin
- Department of Food Nutrition and Health Biotechnology, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, 41354 Taiwan
| | - Chun-Ping Lin
- Department of Food Nutrition and Health Biotechnology, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, 41354 Taiwan
- Office of Environmental Safety and Health, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, 41354 Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Rd., Taichung, 40402 Taiwan
| |
Collapse
|
2
|
Kiamco MM, Zmuda HM, Mohamed A, Call DR, Raval YS, Patel R, Beyenal H. Hypochlorous-Acid-Generating Electrochemical Scaffold for Treatment of Wound Biofilms. Sci Rep 2019; 9:2683. [PMID: 30804362 PMCID: PMC6389966 DOI: 10.1038/s41598-019-38968-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 01/07/2019] [Indexed: 11/10/2022] Open
Abstract
Biofilm formation causes prolonged wound infections due to the dense biofilm structure, differential gene regulation to combat stress, and production of extracellular polymeric substances. Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa are three difficult-to-treat biofilm-forming bacteria frequently found in wound infections. This work describes a novel wound dressing in the form of an electrochemical scaffold (e-scaffold) that generates controlled, low concentrations of hypochlorous acid (HOCl) suitable for killing biofilm communities without substantially damaging host tissue. Production of HOCl near the e-scaffold surface was verified by measuring its concentration using needle-type microelectrodes. E-scaffolds producing 17, 10 and 7 mM HOCl completely eradicated S. aureus, A. baumannii, and P. aeruginosa biofilms after 3 hours, 2 hours, and 1 hour, respectively. Cytotoxicity and histopathological assessment showed no discernible harm to host tissues when e-scaffolds were applied to explant biofilms. The described strategy may provide a novel antibiotic-free strategy for treating persistent biofilm-associated infections, such as wound infections.
Collapse
Affiliation(s)
- Mia Mae Kiamco
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Hannah M Zmuda
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Abdelrhman Mohamed
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Douglas R Call
- The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Yash S Raval
- Divisions of Clinical Microbiology, Rochester, MN, USA
| | - Robin Patel
- Divisions of Clinical Microbiology, Rochester, MN, USA
- Divisions of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Haluk Beyenal
- The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| |
Collapse
|
3
|
Salisbury AM, Percival SL. The Efficacy of an Electrolysed Water Formulation on Biofilms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1214:1-8. [PMID: 29748921 DOI: 10.1007/5584_2018_207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Electrolysed water is a basic process whereby an electric current is passed through deionised water containing a low concentration of sodium chloride in an electrolysis chamber, which results in a more complex chemistry resulting in the production of a strong bactericidal and fungicidal solution at the anode. This microbicidal solution contains hypochlorous acid that is fast-acting and environmentally safe, as upon bacterial killing, the equilibrium shifts from hypochlorous acid back to salt and water. Other antimicrobial agents produced in this process include sodium hypochlorite and chlorine. The use of electrolysed water formulations in wound care to control wound bioburden is underway. However, there is limited evidence of the efficacy of electrolysed water on the control of biofilms, which are renowned for their tolerance to a variety of antimicrobials. Therefore this study aimed to assess a new electrolysed water formulation on in vitro Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Results showed that the electrolysed water formulation effectively reduced biofilm in all models following a 15 min contact time. Microbial cell counts confirmed the reduction biofilm bacteria. Additional cytotoxicity using L929 fibroblasts confirmed that a 50% and 25% dilution of the electrolysed water formulation was non-cytotoxic to cells. In conclusion, this study has confirmed that the application of a new electrolysed water product effectively removed biofilm after a short exposure time. The use of this technology as a wound cleanser may help to control existing biofilms in complicated, non-healing wounds.
Collapse
Affiliation(s)
- Anne-Marie Salisbury
- 5D Health Protection Group Ltd., Centre of Excellence for Biofilm Science (CEBS), Liverpool, UK
| | - Steven L Percival
- 5D Health Protection Group Ltd., Centre of Excellence for Biofilm Science (CEBS), Liverpool, UK.
| |
Collapse
|