Serum progesterone and oxytocinase, and endometrial and luteal gene expression in pregnant, nonpregnant, oxytocin, carbetocin and meclofenamic acid treated mares.
Theriogenology 2023;
198:47-60. [PMID:
36549183 DOI:
10.1016/j.theriogenology.2022.10.019]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 12/24/2022]
Abstract
Our objectives were to examine changes in endometrial and luteal gene expression during estrus, diestrus, pregnancy and treatments to induce luteolysis and putatively induce luteostasis. Groups were: Diestrus (DIEST), Estrus (ESTR), Pregnant (PREG), Oxytocin (OXY), Carbetocin (CARB), and Meclofenamic acid (MFA). Blood was obtained from day (D)12 to D15 for measurement of oxytocinase, also referred to as leucyl-cysteinyl aminopeptidase (LNPEP) and progesterone. Luteal biopsies were obtained on D12 and D15 and an endometrial biopsy on D15. Real-time RT-PCR was performed for the following genes: PGR, ESR1, OXTR,OXT, LNPEP, PTGS2, PTGFR, PLA2G2C, PTGES, SLC2A4, and SLC2A1. Regarding serum LNPEP, PREG and OXY (p-value<0.001) had higher concentrations than DIEST mares. Endometrial PTGES expression was higher (p-value <0.04) in DIEST, PREG and OXY than other groups. Endometrium from ESTR had increased expression of OXT (p-value < 0.02) compared to MFA and OXY mares. Carbetocin treatment: decreased serum progesterone and LNPEP; increased endometrial PLA2G2C; decreased endometrial PTGES; and decreased luteal aromatase and PTGES. Treatment with MFA: decreased endometrial PLA2G2C, increased endometrial PTGES; and resulted in less OXTR and OXT luteal abundance on D12 compared to D15. Endometrial and luteal expression of LNPEP is affected by physiologic stage and treatment and is involved in luteal function and pregnancy recognition pathways through effects on oxytocin and prostaglandin synthesis in the horse.
Collapse