1
|
Karimi E, Vahedi N, Sarbandi RR, Parandakh A, Ganjoury C, Sigaroodi F, Najmoddin N, Tabatabaei M, Tafazzoli-Shadpour M, Ardeshirylajimi A, Khani MM. Nanoscale vibration could promote tenogenic differentiation of umbilical cord mesenchymal stem cells. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00780-4. [PMID: 37405626 DOI: 10.1007/s11626-023-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023]
Abstract
Regulation of mesenchymal stem cell (MSC) fate for targeted cell therapy applications has been a subject of interest, particularly for tissues such as tendons that possess a marginal regenerative capacity. Control of MSCs' fate into the tendon-specific lineage has mainly been achieved by implementation of chemical growth factors. Mechanical stimuli or 3-dimensional (D) scaffolds have been used as an additional tool for the differentiation of MSCs into tenocytes, but oftentimes, they require a sophisticated bioreactor or a complex scaffold fabrication technique which reduces the feasibility of the proposed method to be used in practice. Here, we used nanovibration to induce the differentiation of MSCs toward the tenogenic fate solely by the use of nanovibration and without the need for growth factors or complex scaffolds. MSCs were cultured on 2D cell culture dishes that were connected to piezo ceramic arrays to apply nanovibration (30-80 nm and 1 kHz frequency) over 7 and 14 d. We observed that nanovibration resulted in significant overexpression of tendon-related markers in both gene expression and protein expression levels, while there was no significant differentiation into adipose and cartilage lineages. These findings could be of assistance in the mechanoregulation of MSCs for stem cell engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Elahe Karimi
- Department of Tissue Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Negin Vahedi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Reza Ramezani Sarbandi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Camellia Ganjoury
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Tabatabaei
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Abdolreza Ardeshirylajimi
- Sina Cell Research and Product Center, Tehran, Iran
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|