Weinert-Nelson JR, Biddle AS, Williams CA. Fecal microbiome of horses transitioning between warm-season and cool-season grass pasture within integrated rotational grazing systems.
Anim Microbiome 2022;
4:41. [PMID:
35729677 PMCID:
PMC9210719 DOI:
10.1186/s42523-022-00192-x]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/10/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND
Diet is a key driver of equine hindgut microbial community structure and composition. The aim of this study was to characterize shifts in the fecal microbiota of grazing horses during transitions between forage types within integrated warm- (WSG) and cool-season grass (CSG) rotational grazing systems (IRS). Eight mares were randomly assigned to two IRS containing mixed cool-season grass and one of two warm-season grasses: bermudagrass [Cynodon dactylon (L.) Pers.] or crabgrass [Digitaria sanguinalis (L.) Scop.]. Fecal samples were collected during transitions from CSG to WSG pasture sections (C-W) and WSG to CSG (W-C) on days 0, 2, 4, and 6 following pasture rotation and compared using 16S rRNA gene sequencing.
RESULTS
Regardless of IRS or transition (C-W vs. W-C), species richness was greater on day 4 and 6 in comparison to day 0 (P < 0.05). Evenness, however, did not differ by day. Weighted UniFrac also did not differ by day, and the most influential factor impacting β-diversity was the individual horse (R2 ≥ 0.24; P = 0.0001). Random forest modeling was unable to accurately predict days within C-W and W-C, but could predict the individual horse based on microbial composition (accuracy: 0.92 ± 0.05). Only three differentially abundant bacterial co-abundance groups (BCG) were identified across days within all C-W and W-C for both IRS (W ≥ 126). The BCG differing by day for all transitions included amplicon sequence variants (ASV) assigned to bacterial groups with known fibrolytic and butyrate-producing functions including members of Lachnospiraceae, Clostridium sensu stricto 1, Anaerovorax the NK4A214 group of Oscillospiraceae, and Sarcina maxima. In comparison, 38 BCG were identified as differentially abundant by horse (W ≥ 704). The ASV in these groups were most commonly assigned to genera associated with degradation of structural carbohydrates included Rikenellaceae RC9 gut group, Treponema, Christensenellaceae R-7 group, and the NK4A214 group of Oscillospiraceae. Fecal pH also did not differ by day.
CONCLUSIONS
Overall, these results demonstrated a strong influence of individual horse on the fecal microbial community, particularly on the specific composition of fiber-degraders. The equine fecal microbiota were largely stable across transitions between forages within IRS suggesting that the equine gut microbiota adjusted at the individual level to the subtle dietary changes imposed by these transitions. This adaptive capacity indicates that horses can be managed in IRS without inducing gastrointestinal dysfunction.
Collapse