1
|
Huang Y, Sarkhel S, Roy A, Mohan A. Interrelationship of lipid aldehydes (MDA, 4-HNE, and 4-ONE) mediated protein oxidation in muscle foods. Crit Rev Food Sci Nutr 2024; 64:11809-11825. [PMID: 37589270 DOI: 10.1080/10408398.2023.2245029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Proteins and essential fatty acids are crucial components of the human diet. However, lipids and proteins are susceptible to oxidative modification during food processing resulting in changes to their structural characteristics and functional properties. Food products rich in polyunsaturated fatty acids are highly susceptible to lipid peroxidation and generate bifunctional reactive aldehydes. Bifunctional aldehydes such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE), and 4-oxo-2-nonenal (4-ONE) readily bind to protein nucleophiles and lead to intra- or intermolecular protein cross-linking. In comparison with lipid oxidation, the degradation of proteins by prooxidants appears to be more intricate and results in a greater diversity of oxidation products. Although individual oxidation processes involving lipids and proteins received increasing attention in the past decades, the interactions between those aldehydes and protein oxidation in food have not been extensively explored. Studies indicate that the reactions of lipid and protein oxidation may take place simultaneously or independently, but oxidation products that arose from one reaction may further interact with lipids or proteins. The present review presents a perspective on reactive aldehydes and the role of aldehydes in inducing protein oxidation in muscle foods. Emphasis is focused on the interaction mechanism of the lipid, protein, and myoglobin protein oxidations. In addition, the occurrence of aldehydes derived from lipid oxidation in food systems as well as the endogenous antioxidant peptides or amino acids in meat and plant proteins are also briefly described.
Collapse
Affiliation(s)
- Yixiao Huang
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| | - Shubhajit Sarkhel
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand, India
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology, and Process Engineering, Department of Chemical Engineering, Birla Institute of Technology Mesra, Ranchi, Jharkhand, India
| | - Anand Mohan
- Department of Food Science and Technology, University of Georgia, Athens, GA, USA
| |
Collapse
|
2
|
Dordevic D, Gablo N, Zelenkova L, Dordevic S, Tremlova B. Utilization of Spent Coffee Grounds as a Food By-Product to Produce Edible Films Based on κ-Carrageenan with Biodegradable and Active Properties. Foods 2024; 13:1833. [PMID: 38928775 PMCID: PMC11202819 DOI: 10.3390/foods13121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Coffee ranks as the second most consumed beverage globally, and its popularity is associated with the growing accumulation of spent coffee grounds (SCG), a by-product that, if not managed properly, constitutes a serious ecological problem. Analyses of SCG have repeatedly shown that they are a source of substances with antioxidant and antimicrobial properties. In this study, we assessed SCG as a substrate for the production of edible/biodegradable films. The κ-carrageenan was utilized as a base polymer and the emulsified SCG oil as a filler. The oil pressed from a blend of Robusta and Arabica coffee had the best quality and the highest antioxidant properties; therefore, it was used for film production. The film-forming solution was prepared by dissolving κ-carrageenan in distilled water at 50 °C, adding the emulsified SCG oil, and homogenizing. This solution was cast onto Petri dishes and dried at room temperature. Chemical characterization showed that SCG increased the level of polyphenols in the films and the antioxidant properties, according to the CUPRAC assay (CC1 23.90 ± 1.23 µmol/g). SCG performed as a good plasticizer for κ-carrageenan and enhanced the elongation at the break of the films, compared with the control samples. The solubility of all SCG films reached 100%, indicating their biodegradability and edibility. Our results support the application of SCG as an active and easily accessible compound for the food packaging industry.
Collapse
Affiliation(s)
| | - Natalia Gablo
- Department of Plant Origin Food Sciences, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42 Brno, Czech Republic; (D.D.); (L.Z.); (S.D.); (B.T.)
| | | | | | | |
Collapse
|
3
|
Gonçalves FD, Almeida ML, Martins JM, Carvalho LH, Rodrigues JA, Ramos RM. Gas-diffusion microextraction combined with HPLC-DAD for the comprehensive analysis of volatile carbonyl compounds in wood-based panels. Talanta 2024; 272:125818. [PMID: 38402738 DOI: 10.1016/j.talanta.2024.125818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
This work presents a novel application of gas-diffusion microextraction (GDME) combined with high-performance liquid chromatography with diode-array detection (HPLC-DAD) for the comprehensive analysis of volatile carbonyl compounds released from wood-based panels. GDME is a simple, fast, and environmentally friendly technique that allows the simultaneous extraction and derivatization of volatile carbonyls directly from solid samples. Commercial particleboards were analysed together with particleboard panels specifically produced using controlled conditions, materials, and reagents, to evaluate the differences in the emission profile of volatile carbonyl compounds. The effect of different production parameters, such as the type of wood particle, resin, and moisture content, on the emission profile of volatile carbonyls from particleboards was investigated using principal component analysis (PCA). The results showed that GDME-HPLC-DAD could successfully differentiate particleboards according to their emission of carbonyl compounds, such as formaldehyde, furfural, benzaldehyde, and other aliphatic carbonyls. Besides the differences on the emission of formaldehyde caused by the type of resin used, UF (urea-formaldehyde) and mUF (UF fortified with melamine), it was found that pine (Pinus pinaster Ait.) particleboards exhibit higher emissions of compounds such as acetaldehyde or hexanal when compared to the higher emissions of compounds such as furfural or benzaldehyde on the recycled particleboards.
Collapse
Affiliation(s)
- Fátima Daniela Gonçalves
- LAQV-REQUIMTE - Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Margarida L Almeida
- DEMad - Departamento de Engenharia de Madeiras, Instituto Politécnico de Viseu, Campus Politécnico de Repeses, 3504-510, Viseu, Portugal; LEPABE - Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Jorge M Martins
- DEMad - Departamento de Engenharia de Madeiras, Instituto Politécnico de Viseu, Campus Politécnico de Repeses, 3504-510, Viseu, Portugal; LEPABE - Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Luísa H Carvalho
- DEMad - Departamento de Engenharia de Madeiras, Instituto Politécnico de Viseu, Campus Politécnico de Repeses, 3504-510, Viseu, Portugal; LEPABE - Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - José António Rodrigues
- LAQV-REQUIMTE - Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Rui Miguel Ramos
- LAQV-REQUIMTE - Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
4
|
Custodio-Mendoza JA, Muñoz-Menendez L, España-Fariñas MP, Valente IM, Rodrigues JA, Almeida PJ, Lorenzo RA, Carro AM. Simultaneous determination of carbonyl compounds related to thermal treatment and oxidative stability of infant formulas by gas-diffusion microextraction and high-performance liquid chromatography with ultraviolet detection. Anal Chim Acta 2024; 1288:342164. [PMID: 38220296 DOI: 10.1016/j.aca.2023.342164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
Infant formulae are the only possible alternative to breastfeeding during the first year of life, so it is crucial to assure their innocuousness. Infant formula undergoes heat treatments to ensure safety and shelf life. However, such processes impact health as they lead to the formation of malondialdehyde, acrolein, and α-dicarbonyl compounds, related to Maillard reaction. Thus, there is a need for improved analytical methods to ensure the safety, quality, and nutritional value of infant formulae, and also exploring the potential of specific compounds as indicators for quality control and monitoring purposes. We developed and validated a novel, efficient, and cost-effective method using gas-diffusion microextraction for the simultaneous quantification of carbonyl compounds in infant formula. Malondialdehyde, acrolein, glyoxal, methylglyoxal, and diacetyl were detected as o-phenylenediamine derivatives using HPLC with UV detection. Parameters influencing extraction efficiency were studied using an asymmetric screening design. The validated method has shown excellent linearity, sensitivity, accuracy, and precision. It was applied to analyze 26 infant formula samples, including starter, follow-up, and special formulated powdered infant formula. Methylglyoxal was found in all samples (0.201-3.153 μg mL-1), while malondialdehyde was present only in certain starter formulas (1.033-1.802 μg mL-1). Acrolein (0.510-3.246 μg mL-1), glyoxal (0.109-1.253 μg mL-1), and diacetyl (0.119-2.001 μg mL-1) were detected in various sample types. Principal components and hierarchical cluster analyses have showcased distinct sample clustering based on analyte contents. This study presents a novel methodology for the analysis of markers of thermal treatment and oxidative stability in infant formula. It contributes to the characterization of the products' composition and quality control of infant formulae, thereby enhancing their safety and nutritional adequacy. This study also presents the first reported quantification of acrolein in infant formula and introduces the application of the acrolein-o-phenylenediamine derivative for food analysis.
Collapse
Affiliation(s)
- Jorge A Custodio-Mendoza
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c, 02-776, Warszawa, Poland; Department of Analytical Chemistry, Nutrition and Food Science. University of Santiago de Compostela. 15782, Santiago de Compostela, Spain.
| | - Luis Muñoz-Menendez
- Department of Analytical Chemistry, Nutrition and Food Science. University of Santiago de Compostela. 15782, Santiago de Compostela, Spain
| | - M Pilar España-Fariñas
- Department of Analytical Chemistry, Nutrition and Food Science. University of Santiago de Compostela. 15782, Santiago de Compostela, Spain
| | - Inês M Valente
- REQUIMTE, LAQV, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - José A Rodrigues
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007, Porto, Portugal
| | - Paulo J Almeida
- REQUIMTE, LAQV, ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Rosa A Lorenzo
- Department of Analytical Chemistry, Nutrition and Food Science. University of Santiago de Compostela. 15782, Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS). University of Santiago de Compostela. 15782, Santiago de Compostela, Spain
| | - Antonia M Carro
- Department of Analytical Chemistry, Nutrition and Food Science. University of Santiago de Compostela. 15782, Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS). University of Santiago de Compostela. 15782, Santiago de Compostela, Spain; Instituto de Materiais (iMATUS). University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Zamora R, Alcon E, Hidalgo FJ. Addition of olivetol to crackers decreases malondialdehyde content and produces malondialdehyde-olivetol adducts. Food Chem 2024; 432:137046. [PMID: 37639894 DOI: 10.1016/j.foodchem.2023.137046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
This study was undertaken to investigate the malondialdehyde-trapping ability by m-diphenols and the consequent decrease of malondialdehyde in foods. Olivetol was added to crackers, which were prepared with wheat flour and either oxidized or fresh sunflower, linseed, and camelina oils. When crackers were prepared with oxidized oils, olivetol-containing crackers contained less malondialdehyde (∼30%) than control crackers. This decrease of malondialdehyde content was parallel to the formation of malondialdehyde-olivetol adducts (250-1300 ng/g). When fresh oils were employed, storage produced more malondialdehyde (300-700%) in control than in olivetol-containing crackers. This decrease of malondialdehyde content was also parallel to the formation of malondialdehyde-olivetol adducts (10-90 ng/g). In both cases, the formation of adducts required the contribution of either formaldehyde or acetaldehyde. Obtained results suggest that olivetol not only removed malondialdehyde, but also short chain aldehydes, therefore contributing to the decrease of the content of these toxic aldehydes in phenolic-enriched crackers.
Collapse
Affiliation(s)
- Rosario Zamora
- Instituto de la Grasa, CSIC, Carretera de Utrera Km 1, Campus Universitario - Edificio 46, 41013-Seville, Spain
| | - Esmeralda Alcon
- Instituto de la Grasa, CSIC, Carretera de Utrera Km 1, Campus Universitario - Edificio 46, 41013-Seville, Spain
| | - Francisco J Hidalgo
- Instituto de la Grasa, CSIC, Carretera de Utrera Km 1, Campus Universitario - Edificio 46, 41013-Seville, Spain.
| |
Collapse
|
6
|
do Nascimento MP, Marchiori Berlande B, Guedes Fraga Lopes M, Cardoso de Lima MF, Teodoro de Souza C, Leal de Oliveira MA. Malondialdehyde Analysis in Biological Samples by Capillary Electrophoresis: The State of Art. Crit Rev Anal Chem 2023:1-13. [PMID: 38147303 DOI: 10.1080/10408347.2023.2296948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Lipid peroxidation occurs when substances, such as reactive oxygen species, attack lipids. Polyunsaturated fatty acids are the main targets. Several products are formed, including primary products such as lipid hydroperoxides and secondary products such as malondialdehyde (MDA), the most used lipid peroxidation biomarker. As MDA levels are elevated in several diseases, MDA is an essential indicator for assessing pathological states. The thiobarbituric acid reactive substances assay is the most widely used method for MDA determination. However, it lacks specificity. Capillary Electrophoresis (CE) is a separation technique that has been used to quantify MDA in biological samples. This technique has advantages such as the low amount of biological sample required, absence or low volume of organic solvent, short analysis time, separation of interferents, sample preparation step with only protein precipitation, and the possibility of direct detection of the MDA, without derivatization. To our knowledge, this review article is the first to show the CE background for analyzing MDA in biological samples. Therefore, given the potential of MDA in evaluating pathological states, this article demonstrates the potential of CE to become a reference method for MDA determination in clinical analysis laboratories, which will play a significant role in diagnosing and monitoring diseases.
Collapse
Affiliation(s)
- Maria Patrícia do Nascimento
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Bruna Marchiori Berlande
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
| | - Marina Guedes Fraga Lopes
- Post Graduate program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Mário Flávio Cardoso de Lima
- Post Graduate program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Claudio Teodoro de Souza
- Post Graduate program in Health, Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Marcone Augusto Leal de Oliveira
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
- National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
7
|
Nili-Ahmadabadi A, Torabi K, Mohammadi M, Heshmati A. Thermally oxidized sunflower oil diet alters leptin/ghrelin balance and lipid profile in rats: Possible role of reactive aldehydes in dyslipidemia. J Food Biochem 2022; 46:e14514. [PMID: 36377844 DOI: 10.1111/jfbc.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Sunflower oil is a common edible oil in the world, which is highly prone to oxidative degradation during the frying process. The present study aimed to investigate the effects of products obtained from the thermal oxidation process of sunflower oil on metabolic indices, and the secretion status of leptin and ghrelin in rats. In vivo studies were designed after determining the rate of formation of active aldehydes and peroxide value in sunflower oil following 300°C in a period of 30-240 min. To this end, 36 rats in 6 separate groups were fed with 2 ml of normal saline, fresh sunflower oil, and heated oils at 30, 60, 120, and 240 min for 45 days. Finally, lipid profile changes and leptin/ghrelin secretion were examined, along with histological changes in the liver tissue. The results indicated a significant increase in serum LDL, VLDL and triglycerides, and a decrease in HDL, in the groups treated with heated oils. These changes were associated with a higher accumulation of triglycerides, active aldehydes, and histological changes in the hepatic tissue. Although the serum ghrelin level in the groups receiving heated oil did not change significantly compared to the fresh oil, the serum leptin level increased significantly in the groups receiving heated oil. According to our findings, increasing the time of sunflower oil heating enhanced the formation of active aldehydes, so that daily consumption of such oxidized oils might be associated with the occurrence of dyslipidemia, fatty liver and the development of leptin resistance. PRACTICAL APPLICATIONS: Sunflower oil is highly prone to oxidative degradation during the frying process. Increasing time of sunflower oil heating enhanced the formation of active aldehydes. Daily consumption of oxidized oils might be associated with the occurrence of dyslipidemia, fatty liver and the development of leptin resistance.
Collapse
Affiliation(s)
- Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kiyana Torabi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Custodio-Mendoza J, Caamaño-Fernandez C, Lage M, Almeida P, Lorenzo R, Carro A. GC–MS determination of malondialdehyde, acrolein, and 4-hydroxy-2-nonenal by ultrasound-assisted dispersive liquid-liquid microextraction in beverages. Food Chem 2022; 384:132530. [DOI: 10.1016/j.foodchem.2022.132530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 12/19/2022]
|
9
|
Bartkovský M, Sopková D, Andrejčáková Z, Vlčková R, Semjon B, Marcinčák S, Bujňák L, Pospiech M, Nagy J, Popelka P, Kyzeková P. Effect of Concentration of Flaxseed ( Linum usitatissimum) and Duration of Administration on Fatty Acid Profile, and Oxidative Stability of Pork Meat. Animals (Basel) 2022; 12:ani12091087. [PMID: 35565513 PMCID: PMC9105188 DOI: 10.3390/ani12091087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022] Open
Abstract
Flaxseed is a common ingredient used for livestock feed. The aim of this work was to study the effect of a diet supplemented with flaxseed at 5% and 10% concentrations in the intervals of 3 and 6 weeks prior slaughter on fatty acid profile and oxidative stability of pork meat. Meat samples were collected after slaughter from each animal (five groups, n = 6). Samples of the musculus longissimus dorsi (MLD) and the musculus gluteobiceps (MGB) were selected. Chemical composition, fatty acid profile and oxidative stability during the storage of meat under chilling conditions (4 °C, 7 days) was analyzed. The addition of flaxseed significantly affected the composition of fatty acid profile and the shelf life of the produced meat. The fat content was changed in the experimental groups with 10% flaxseed supplementation (10.84% in MGB and 9.56% MLD) versus the control group. Despite the different concentrations of flaxseed, the best EPA/AA ratio was observed in the experimental groups fed with flaxseed supplementation for 3 weeks. The worst oxidative stability of meat samples (p < 0.05) was recorded in the experimental groups with the addition of flaxseed for 6 weeks, which was related to higher PUFA content in samples of the experimental groups and higher susceptibility of PUFAs to lipid oxidation. The oxidative stability of meat in the experimental group fed 5% flaxseed supplementation for 3 weeks was not affected.
Collapse
Affiliation(s)
- Martin Bartkovský
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (S.M.); (J.N.); (P.P.)
- Correspondence: (M.B.); (D.S.); Tel.: +421-917-124-764 (M.B.); +421-915-984-767 (D.S.)
| | - Drahomíra Sopková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (Z.A.); (R.V.)
- Correspondence: (M.B.); (D.S.); Tel.: +421-917-124-764 (M.B.); +421-915-984-767 (D.S.)
| | - Zuzana Andrejčáková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (Z.A.); (R.V.)
| | - Radoslava Vlčková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (Z.A.); (R.V.)
| | - Boris Semjon
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (S.M.); (J.N.); (P.P.)
| | - Slavomír Marcinčák
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (S.M.); (J.N.); (P.P.)
| | - Lukáš Bujňák
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia;
| | - Matej Pospiech
- Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého Tr. 1946/1, 61242 Brno, Czech Republic;
| | - Jozef Nagy
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (S.M.); (J.N.); (P.P.)
| | - Peter Popelka
- Department of Food Hygiene, Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (S.M.); (J.N.); (P.P.)
| | - Petronela Kyzeková
- Clinic of Swine, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia;
| |
Collapse
|
10
|
Carlini GCG, Roschel GG, Ferrari RA, Alencar SM, Ota HC, da Silveira TFF, Castro IA. Chemical characterization of Echium plantagineum seed oil obtained by three methods of extraction. J Food Sci 2021; 86:5307-5317. [PMID: 34841517 DOI: 10.1111/1750-3841.15972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Echium seed oil has been considered an important alternative source of omega 3 fatty acids (n-3 FA) for human consumption. Considering the oxidative instability of n-3 FA richer oils, the objective of this study was to determine the chemical and sensory parameters of the oil obtained from Echium plantagineum seeds obtained by three extraction methods (hydraulic press: HYD; continuous screw press: PRESS; and solvent technique: SOLV). Stearidonic acid (C18:4, n3), the most important n-3 FA present in the oil, changed from 12.5% to 12.7%. Regarding the minor compounds, PRESS sample showed the highest concentration of gamma-tocopherol (782.24 mg/kg oil), while SOLV samples presented the highest amount of β-sitosterol (73.46 mg/100 g) with no difference of campesterol concentration (159.56 mg/100 g) among the samples. Higher values of total phenolics (19.65 mg GAE/kg oil) and β-carotene (34.83 mg/kg oil) were also found in the SOLV samples, suggesting the influence of hexane in the extraction of these bioactive compounds. High resolution mass spectrometry identified caffeic acid and its derivatives as the main phenolic compounds present in the echium oil. PRESS sample showed the best oxidative stability as measured by PV (0.61 mmol/kg oil) and malondialdehyde (173.13 µmol), probably due to faster time of processing compared to HYD and SOLV samples. Our data showed that the extraction method changed the chemical composition of the minor compounds in the echium oil, but these alterations did not reduce its nutritional quality or sensory acceptability. PRACTICAL APPLICATION: Echium oil represents a great potential source of omega 3 fatty acids, but there is not enough information about its oxidative stability and chemical composition, especially toward minor compounds. Our study characterizes echium oil composition obtained from three extraction methods, contributing to amplify the technical information about this important alternative oil for human consumption.
Collapse
Affiliation(s)
- Giovanna Calixto Garcia Carlini
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Grassmann Roschel
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Severino Mathias Alencar
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Helton Cherubim Ota
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Inar Alves Castro
- LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Giordano GF, Freitas VMS, Schleder GR, Santhiago M, Gobbi AL, Lima RS. Bifunctional Metal Meshes Acting as a Semipermeable Membrane and Electrode for Sensitive Electrochemical Determination of Volatile Compounds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35914-35923. [PMID: 34309352 DOI: 10.1021/acsami.1c07874] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The monitoring of toxic inorganic gases and volatile organic compounds has brought the development of field-deployable, sensitive, and scalable sensors into focus. Here, we attempted to meet these requirements by using concurrently microhole-structured meshes as (i) a membrane for the gas diffusion extraction of an analyte from a donor sample and (ii) an electrode for the sensitive electrochemical determination of this target with the receptor electrolyte at rest. We used two types of meshes with complementary benefits, i.e., Ni mesh fabricated by robust, scalable, and well-established methods for manufacturing specific designs and stainless steel wire mesh (SSWM), which is commercially available at a low cost. The diffusion of gas (from a donor) was conducted in headspace mode, thus minimizing issues related to mesh fouling. When compared with the conventional polytetrafluoroethylene (PTFE) membrane, both the meshes (40 μm hole diameter) led to a higher amount of vapor collected into the electrolyte for subsequent detection. This inedited fashion produced a kind of reverse diffusion of the analyte dissolved into the electrolyte (receptor), i.e., from the electrode to bulk, which further enabled highly sensitive analyses. Using Ni mesh coated with Ni(OH)2 nanoparticles, the limit of detection reached for ethanol was 24-fold lower than the data attained by a platform with a PTFE membrane and placement of the electrode into electrolyte bulk. This system was applied in the determination of ethanol in complex samples related to the production of ethanol biofuel. It is noteworthy that a simple equation fitted by machine learning was able to provide accurate assays (accuracies from 97 to 102%) by overcoming matrix effect-related interferences on detection performance. Furthermore, preliminary measurements demonstrated the successful coating of the meshes with gold films as an alternative raw electrode material and the monitoring of HCl utilizing Au-coated SSWMs. These strategies extend the applicability of the platform that may help to develop valuable volatile sensing solutions.
Collapse
Affiliation(s)
- Gabriela F Giordano
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
| | - Vitoria M S Freitas
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
- Faculty of Chemical Engineering, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Gabriel R Schleder
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Angelo L Gobbi
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
| | - Renato S Lima
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
12
|
Food matrixes play a key role in the distribution of contaminants of lipid origin: A case study of malondialdehyde formation in vegetable oils during deep-frying. Food Chem 2021; 347:129080. [PMID: 33508586 DOI: 10.1016/j.foodchem.2021.129080] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 11/20/2022]
Abstract
Vegetable oils are increasingly replacing animal fats in diets, but malondialdehyde (MDA), a peroxidation product of these oils, has been regarded as toxic; this necessitated investigation of MDA formation during consumption. This study investigated MDA formation in four vegetable oils during frying French fries (FF) and fried chicken breast meat (FCBM) at 180 °C for 7 h. Results showed that MDA contents were lower in oils used for frying foods than in control oils, mainly because MDA was incorporated into the foods. MDA content was lower in FF, but higher in FCBM, due to the different food components. Model oil and food system analyses yielded similar results. MDA bound the hydrophobic helical structure in starch-based FF, but was exhibited greater reactivity with nucleophilic groups in protein-based FCBM, resulting in stronger interaction with FCBM than with FF. Our results indicated the existence of distinct mechanisms underlying MDA migration in different food matrixes.
Collapse
|
13
|
Lobato A, Fernandes VC, Pacheco JG, Delerue-Matos C, Gonçalves LM. Organochlorine pesticide analysis in milk by gas-diffusion microextraction with gas chromatography-electron capture detection and confirmation by mass spectrometry. J Chromatogr A 2020; 1636:461797. [PMID: 33348272 DOI: 10.1016/j.chroma.2020.461797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
Organochlorine pesticides (OCPs) are synthetic compounds less used nowadays due to their toxicity combined with slow degradation which leads to accumulation in the environment. Gas-diffusion microextraction (GDME) was employed prior to gas chromatography with electron capture detection (GC-ECD) and mass spectrometry (GC-MS). For the first time, the low-cost, eco-friendly GDME system was used to extract the OCPs directly from milk samples and associated with GC-ECD. Parameters that affect GDME's performance (extract volume, extraction time, and temperature) were optimized. The calibration curves of all OCPs (α- and β-hexachlorocyclohexane, lindane, hexachlorobenzene, p,p'-DDE, aldrin, dieldrin, and α-endosulfan) had coefficients of determination (r2) ranging from 0.991 to 0.995, and limits of detection (LODs) values ranging from 3.7 to 4.8 µg L-1. This method also provided satisfactory values for precision with relative standard deviations (RSDs) lower than 10% and recoveries above 90%. As a proof-of-concept, several commercial milk samples were analyzed, aldrin was found in one of them but below the maximum residue limits.
Collapse
Affiliation(s)
- Alnilan Lobato
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo - SP, Brazil
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Porto, Portugal.
| | - João G Pacheco
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto (ISEP), Instituto Politécnico do Porto, Porto, Portugal
| | - Luís Moreira Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo (USP), São Paulo - SP, Brazil.
| |
Collapse
|
14
|
Optimization of the thiobarbituric acid-malonaldehyde reaction in non-aqueous medium. Direct analysis of malonaldehyde in oil samples by HPLC with fluorimetric detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Determination of malondialdehyde, acrolein and four other products of lipid peroxidation in edible oils by Gas-Diffusion Microextraction combined with Dispersive Liquid-Liquid Microextraction. J Chromatogr A 2020; 1627:461397. [DOI: 10.1016/j.chroma.2020.461397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
|
16
|
Fashi A, Cheraghi M, Ebadipur H, Ebadipur H, Zamani A, Badiee H, Pedersen-Bjergaard S. Exploiting agarose gel modified with glucose-fructose syrup as a green sorbent in rotating-disk sorptive extraction technique for the determination of trace malondialdehyde in biological and food samples. Talanta 2020; 217:121001. [DOI: 10.1016/j.talanta.2020.121001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
|