1
|
Ragupathy S, Thirugnanasambandam A, Vinayagam V, Newmaster SG. Nuclear Magnetic Resonance Fingerprints and Mini DNA Markers for the Authentication of Cinnamon Species Ingredients Used in Food and Natural Health Products. PLANTS (BASEL, SWITZERLAND) 2024; 13:841. [PMID: 38592863 PMCID: PMC10975438 DOI: 10.3390/plants13060841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Cinnamomum verum (syn C. zeylanicum) is considered 'true' cinnamon. However, it is reported that less expensive sources of cinnamon from C. cassia (syn C. aromaticum), C. loureiroi, and C. burmannii (toxic coumarin) may be used in the place of C. verum. We lack the quality assurance tools that are required to differentiate C. verum from other cinnamon species when verifying that the correct species is sourced from ingredient suppliers. The current research on cinnamon species authentication using DNA tools is limited to a few species and the use of high-quality DNA extracted from raw leaf materials. The cinnamon bark traded in the supply chain contains much less DNA and poorer-quality DNA than leaves. Our research advances DNA methods to authenticate cinnamon, as we utilized full-length chloroplast genomes via a genome skimming approach for C. burmannii and C. cassia to facilitate the design of optimal mini DNA markers. Furthermore, we developed and validated the use of NMR fingerprints for several commercial cinnamon species, including the quantification of 16 molecules. NMR fingerprints provided additional data that were useful for quality assessment in cinnamon extract powders and product consistency. Both the new mini DNA markers and NMR fingerprints were tested on commercial cinnamon products.
Collapse
Affiliation(s)
- Subramanyam Ragupathy
- Natural Health Products (NHP) Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (S.G.N.)
| | - Arunachalam Thirugnanasambandam
- Natural Health Products (NHP) Research Alliance, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (V.V.); (S.G.N.)
| | | | | |
Collapse
|
2
|
Galvan D, de Aguiar LM, Bona E, Marini F, Killner MHM. Successful combination of benchtop nuclear magnetic resonance spectroscopy and chemometric tools: A review. Anal Chim Acta 2023; 1273:341495. [PMID: 37423658 DOI: 10.1016/j.aca.2023.341495] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/20/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023]
Abstract
Low-field nuclear magnetic resonance (NMR) has three general modalities: spectroscopy, imaging, and relaxometry. In the last twelve years, the modality of spectroscopy, also known as benchtop NMR, compact NMR, or just low-field NMR, has undergone instrumental development due to new permanent magnetic materials and design. As a result, benchtop NMR has emerged as a powerful analytical tool for use in process analytical control (PAC). Nevertheless, the successful application of NMR devices as an analytical tool in several areas is intrinsically linked to its coupling with different chemometric methods. This review focuses on the evolution of benchtop NMR and chemometrics in chemical analysis, including applications in fuels, foods, pharmaceuticals, biochemicals, drugs, metabolomics, and polymers. The review also presents different low-resolution NMR methods for spectrum acquisition and chemometric techniques for calibration, classification, discrimination, data fusion, calibration transfer, multi-block and multi-way.
Collapse
Affiliation(s)
- Diego Galvan
- Chemistry Institute, Universidade Federal de Mato Grosso do Sul (UFMS), 79070-900, Campo Grande, MS, Brazil; Chemistry Departament, Universidade Estadual de Londrina (UEL), 86.057-970, Londrina, PR, Brazil.
| | | | - Evandro Bona
- Post-Graduation Program of Food Technology (PPGTA), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Campo Mourão, 87301-899, Campo Mourão, PR, Brazil; Post-Graduation Program of Chemistry (PPGQ), Universidade Tecnológica Federal do Paraná (UTFPR), Campus Curitiba, 80230-901, Curitiba, PR, Brazil
| | - Federico Marini
- Department of Chemistry, University of Rome "La Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mário Henrique M Killner
- Chemistry Departament, Universidade Estadual de Londrina (UEL), 86.057-970, Londrina, PR, Brazil
| |
Collapse
|
3
|
Cruz-Tirado JP, Lima Brasil Y, Freitas Lima A, Alva Pretel H, Teixeira Godoy H, Barbin D, Siche R. Rapid and non-destructive cinnamon authentication by NIR-hyperspectral imaging and classification chemometrics tools. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122226. [PMID: 36512964 DOI: 10.1016/j.saa.2022.122226] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Cinnamon is a valuable aromatic spice widely used in pharmaceutical and food industry. Commonly, two-cinnamon species are available in the market, Cinnamomum verum (true cinnamon), cropped only in Sri Lanka, and Cinnamomum cassia (false cinnamon), cropped in different geographical origins. Thus, this work aimed to develop classification models based on NIR-hyperspectral imaging (NIR-HSI) coupled to chemometrics to classify C. verum and C. cassia sticks. First, principal component analysis (PCA) was applied to explore hyperspectral images. Scores surface displayed the high similarity between species supported by comparable macronutrient concentration. PC3 allowed better class differentiation compared to PC1 and PC2, with loadings exhibiting peaks related to phenolics/aromatics compounds, such as coumarin (C. cassia) or catechin (C. verum). Partial least square discriminant analysis (PLS-DA) and Support vector machine (SVM) reached similar performance to classify samples according to origin, with error = 3.3 % and accuracy = 96.7 %. A permutation test with p < 0.05 validated PLS-DA predictions have real spectral data dependency, and they are not result of chance. Pixel-wise (approach A) and sample-wise (approach B, C and D) classification maps reached a correct classification rate (CCR) of 98.3 % for C. verum and 100 % for C. cassia. NIR-HSI supported by classification chemometrics tools can be used as reliable analytical method for cinnamon authentication.
Collapse
Affiliation(s)
- J P Cruz-Tirado
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Yasmin Lima Brasil
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Adriano Freitas Lima
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Heiler Alva Pretel
- Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo, Peru
| | - Helena Teixeira Godoy
- Department of Food Science, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Douglas Barbin
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Raúl Siche
- Escuela de Ingeniería Agroindustrial, Facultad de Ciencias Agropecuarias, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo, Peru.
| |
Collapse
|
4
|
Gunning Y, Davies KS, Kemsley EK. Authentication of saffron using 60 MHz 1H NMR spectroscopy. Food Chem 2023; 404:134649. [DOI: 10.1016/j.foodchem.2022.134649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
|
5
|
Osman A, Chittiboyina AG, Avula B, Ali Z, Adams SJ, Khan IA. Quality Consistency of Herbal Products: Chemical Evaluation. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:163-219. [PMID: 37392312 DOI: 10.1007/978-3-031-26768-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
The widespread utility of herbal products has been rising considerably worldwide, including both developed and developing countries, leading to the rapid growth of their availability in the United States and globally. This substantial increase in consumption of herbal products has witnessed the emergence of adverse effects upon oral administration of certain of these products, and thus has raised safety concerns. The adverse effects caused by the consumption of certain botanical medicines occur primarily as a result of the poor quality of plant raw materials or the finished products, which inherently may affect safety and/or efficacy. The poor quality of some herbal products can be attributed to a lack of proper quality assurance and quality control. A high demand for herbal products that surpasses production, combined with a desire for maximizing profits, along with a lack of rigorous quality control within some manufacturing facilities have led to the emergence of quality inconsistencies. The underlying causes for this involve the misidentification of plant species, or their substitution, adulteration, or contamination with harmful ingredients. Analytical assessments have revealed there to be frequent and significant compositional variations between marketed herbal products. The inconsistency of the quality of herbal products can be ascribed essentially to the inconsistency of the botanical raw material quality used to manufacture the products. Thus, the quality assurance and the quality control of the botanical raw materials is may contribute significantly to improving the quality and consistency of the quality of the end products. The current chapter focuses on the chemical evaluation of quality and consistency of herbal products, including botanical dietary supplements. Different techniques, instruments, applications, and methods used in identifying, quantifying, and generating chemical fingerprints and chemical profiles of the ingredients of the herbal products will be described. The strengths and weaknesses of the various techniques available will be addressed. Limitations of the other approaches including morphological or microscopic analysis and DNA-based analysis will be presented.
Collapse
Affiliation(s)
- Ahmed Osman
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA.
| | - Amar G Chittiboyina
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Bharathi Avula
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Zulfiqar Ali
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Sebastian J Adams
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- School of Pharmacy, National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
6
|
Burger R, Lindner S, Rumpf J, Do XT, Diehl BW, Rehahn M, Monakhova YB, Schulze M. Benchtop versus high field NMR: Comparable performance found for the molecular weight determination of lignin. J Pharm Biomed Anal 2022; 212:114649. [DOI: 10.1016/j.jpba.2022.114649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
|
7
|
Zhao J, Wang M, Saroja SG, Khan IA. NMR technique and methodology in botanical health product analysis and quality control. J Pharm Biomed Anal 2022; 207:114376. [PMID: 34656935 DOI: 10.1016/j.jpba.2021.114376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Botanicals have played an important role in maintaining human health and well-being throughout history. During the past few decades in particular, the use of botanical health products has gained more popularity. Whereas, quality, safety and efficacy concerns have continuously been critical issues due to the intrinsic chemical complexity of botanicals. Chemical analytical technologies play an imperative role in addressing these issues. Nuclear magnetic resonance (NMR) spectroscopy has proven to be a powerful and useful tool for the investigation of botanical health products. In this review, NMR techniques and methodologies that have been successfully applied to the research and development of botanical health products in all stages, from plants to products, are discussed and summarized. Furthermore, applications of NMR together with other analytical techniques in a variety of domains of botanical health products investigation, such as plant species differentiation, adulteration detection, and bio-activity evaluation, are discussed and illustrated with typical examples. This article provides an overview of the potential uses of NMR techniques and methodologies in an attempt to further promote their recognition and utilization in the field of botanical health products analysis and quality control.
Collapse
Affiliation(s)
- Jianping Zhao
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, US Department of Agriculture, University, MS 38677, USA
| | - Seethapathy G Saroja
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research (NCNPR), School of Pharmacy, University of Mississippi, University, MS 38677, USA; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|