1
|
Jia X, Yu P, An Q, Ren J, Fan G, Wei Z, Li X, Pan S. Identification of glucosinolates and volatile odor compounds in microwaved radish (Raphanus sativus L.) seeds and the corresponding oils by UPLC-IMS-QTOF-MS and GC × GC-qMS analysis. Food Res Int 2023; 169:112873. [PMID: 37254321 DOI: 10.1016/j.foodres.2023.112873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 06/01/2023]
Abstract
The effect of microwave treatment on the content of glucosinolates (GSL) in radish seeds and volatile odor compounds in the microwaved radish seed oils (MRSO) is still unclear. In this study, a total of 13 GSL were identified and quantified in five radish seed varieties by UPLC-IMS-QTOF-MS, among which glucoraphenin, glucoraphasatin, glucoerucin accounting for up to 90 %. Total GSL decreased by 47.39-67.88% after microwave processing. Moreover, 58 odor compounds were identified in MRSO, including 6 sulfides, 12 nitriles, 2 isothiocyanates, 10 alcohols, 12 aldehydes, 5 ketones, 6 acids, and 5 others. The major odor compounds were (methyldisulfanyl)methane, dimethyltrisulfane, (methylsulfinyl)methane, 3-(methylsulfanyl)-1-propanol, methyl thiocyanate, hexanenitrile, 5-(methylsulfanyl)pentanenitrile, and 4-isothiocyanato-1-butene with odor activity value (OAV) higher than 1. The principal components analysis (PCA) results can distinguish MRSO from five different radish seed varieties, three of which (H20-18, H20-19 and H20-28) were in one group and other two (H20-23 and H20-26) were in another group. In addition, aliphatic GSL showed positive correlations with sulfides, isothiocyanates, and nitriles, while negative correlations with alcohols. This work provides a new insight into the odor contribution of GSL degradation products.
Collapse
Affiliation(s)
- Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Pei Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zelan Wei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xixiang Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Chae SH, Lee ON, Park HY, Ku KM. Seasonal Effects of Glucosinolate and Sugar Content Determine the Pungency of Small-Type (Altari) Radishes ( Raphanus sativus L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:312. [PMID: 35161293 PMCID: PMC8839410 DOI: 10.3390/plants11030312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Kimchi made from small-type (Altari) radishes grown in late spring is more pungent than that made from autumn-grown Altari radishes, which poses a major challenge in the kimchi industry. The mechanism through which the pungency of Altari radish changes seasonally has not been intensively investigated. In this study, three small-type radish cultivars with different pungency levels were cultivated in spring and autumn to identify the factors affecting the seasonal-dependent pungency of small-type radishes. The contents of pungency-related metabolite glucoraphasatin and other polar metabolites were analyzed. Although a previous study reported that the glucoraphasatin concentration affects the pungency of radish, in the current study, the concentration of neither glucoraphasatin nor its hydrolysis product (raphasatin) could fully explain the change in the pungency associated with radish cultivars grown in the two seasons. The change in the pungency of radish by season may be explained by the ratio of raphasatin content to total sweetness of sugars. In addition, the polar metabolites that differ with season were analyzed to identify seasonal biomarkers and understand the seasonal changed physio-biochemistry.
Collapse
Affiliation(s)
- Seung-Hun Chae
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea;
- Department of Horticulture, Chonnam National University, Gwangju 61186, Korea
| | - O New Lee
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Korea;
| | - Han Yong Park
- Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul 05006, Korea;
| | - Kang-Mo Ku
- BK21 Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Korea;
- Department of Horticulture, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|