1
|
Zhou CX, Zhang W, Yu BG, Yang HF, Zhao QY, Wang Y, Sun K, Lakshmanan P, Chen XP, Zou CQ. Global analysis of spatio-temporal variation in mineral nutritional quality of pepper (Capsicum spp.) fruit and its regulatory variables: A meta-analysis. Food Res Int 2024; 193:114855. [PMID: 39160046 DOI: 10.1016/j.foodres.2024.114855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/28/2024] [Indexed: 08/21/2024]
Abstract
Pepper (Capsicum spp.) is an important fruit vegetable worldwide, and it is a rich dietary source of minerals for human being. Yet, the spatio-temporal distribution of pepper fruit mineral composition and the factors influencing such variations at global scale remain unknown. A global meta-analysis of 140 publications providing 649, 562, 690, 811 datapoints was conducted to quantify and evaluate the nutritional quality, comprising potassium (K), magnesium (Mg), iron (Fe) and zinc (Zn), of pepper fruits and its influencing variables. The analysis showed that the global average of K, Mg, Fe and Zn content in pepper fruits was 20-25 g kg-1, 1-1.5 g kg-1, 80-100 mg kg-1, and 20-40 mg kg-1, respectively. There had been a downward trend in pepper fruit nutritional quality over the last decade, especially for Fe and Zn. And, the concentration of all these four nutrients were at lower levels in less developed regions, especially in Africa. Our results showed that the vegetable "green pepper" contains more K, Mg, Fe and Zn than the "hot pepper" used as spice. The concentration of K, Mg, Fe and Zn were increased with fruit yield but that of Fe and Zn were decreased with increase in single fruit weight. Nutritional quality was optimal at mean annual temperature of 10 ℃ - 20 ℃, and was adversely affected when mean annual precipitation was < 500 mm. Pepper fruits produced at pH 6.5-7.5 had higher fruit K concentration while acidic soils (pH<6.5) favored higher Fe and Zn concentrations. The higher soil organic matter (SOM) generally improved the nutritional quality of the pepper. Our results suggest that systematic selection of superior varieties and soil amelioration (adjusting pH and SOM) of the soil-crop system are needed to achieve higher nutritional quality of pepper fruit.
Collapse
Affiliation(s)
- Cheng-Xiang Zhou
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Science, 100193 Beijing, China
| | - Wei Zhang
- College of Resources and Environment, and Academy of Agricultural Science, Southwest University, 400700 Chongqing, China.
| | - Bao-Gang Yu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Science, 100193 Beijing, China
| | - Hao-Feng Yang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Science, 100193 Beijing, China
| | - Qing-Yue Zhao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Science, 100193 Beijing, China
| | - Yuan Wang
- College of Resources and Environment, and Academy of Agricultural Science, Southwest University, 400700 Chongqing, China
| | - Kai Sun
- College of Resources and Environment, and Academy of Agricultural Science, Southwest University, 400700 Chongqing, China
| | - Prakash Lakshmanan
- College of Resources and Environment, and Academy of Agricultural Science, Southwest University, 400700 Chongqing, China; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs; Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, 4067, QLD, Australia
| | - Xin-Ping Chen
- College of Resources and Environment, and Academy of Agricultural Science, Southwest University, 400700 Chongqing, China
| | - Chun-Qin Zou
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Science, 100193 Beijing, China.
| |
Collapse
|
2
|
Xia J, Huang J, Zhang H, Zhang N, Li F, Zhou P, Zhou L, Pu Q. Natural flavonols as probes for direct determination of borax: From conventional fluorescence analysis to paper-based smartphone sensing. Talanta 2024; 274:126053. [PMID: 38599121 DOI: 10.1016/j.talanta.2024.126053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Borax is strictly regulated in the food processing and pharmaceutical industry due to its physiological toxicity, and the development of a direct analytical method is essential for effectively monitoring the borax abuse. In this work, the fluorescence properties of flavonoids, including flavones, isoflavones and flavonols, were systematically investigated from aqueous to borax solutions, and it was found that the weak intrinsic fluorescence of flavonols could be pervasively sensitized by borax. A natural flavonol, morin, was subsequently chosen as a representative probe to develop a turn-on fluorescence sensing method for borax analysis, which achieved a linear response spanning four orders of magnitude with a detection limit of 1.07 μM (0.22 μg mL-1 in terms of Na2B4O7 content). Furthermore, a smartphone-assisted paper-based test device was designed and constructed by 3D printing technology. Using morin-impregnated test strips as the carrier, the borax could be visually detected by the RGB signals of the captured images, with a detection limit of 0.13 mM (27.05 μg mL-1 for Na2B4O7). Combining ion exchange treatment for food samples and sodium periodate oxidation for drug samples, the developed methods were successfully applied for the direct analysis of borax in various products with the recoveries of 86.9-106.3% for traditional fluorescence analysis and 82.7-108.8% for smartphone-assisted fluorescence sensing. The fluorescence property of the morin-borax system was studied using time-dependent density functional theory, and the sensing mechanism was discussed in conjunction with experimental research.
Collapse
Affiliation(s)
- Jingtong Xia
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jinying Huang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hairong Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Nan Zhang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Fengyun Li
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Panpan Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Lei Zhou
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| | - Qiaosheng Pu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Asghar A, Shahid M, Gang P, Khan NA, Fang Q, Xinzheng L. Nutrition, phytochemical profiling, in vitro biological activities, and in silico studies of South Chinese white pitaya ( Hylocereus undatus). Heliyon 2024; 10:e29491. [PMID: 38681612 PMCID: PMC11053203 DOI: 10.1016/j.heliyon.2024.e29491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Background White pitaya, a popular tropical fruit, is known for its high nutritional value. It is commercially cultivated worldwide for its potential use in the food and pharmaceutical industries. This study aims to assess the nutritional and phytochemical contents and biological potential of the South Chinese White Pitaya (SCWP) peel, flesh, and seed extracts. Methods Extract fractions with increasing polarity (ethyl acetate < acetone < ethanol < methanol < aqueous) were prepared. Antibacterial potential was tested against multidrug-resistant (MDR) bacteria, and antioxidant activity was determined using, 2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging assays, and cytotoxic activity against human keratinocyte cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Pharmacological screening and molecular docking simulations were conducted to identify potential antibacterial compounds with druggable characteristics. Molecular dynamics simulation (MDS) was employed to validate the binding stability of the promising ligand-protein complexes. Results All parts of the fruit exhibited a substantial amount of crucial nutrients (minerals, sugars, proteins, vitamins, and fatty acids). The ethanol (ET) and acetone (AC) fractions of all samples demonstrated notable inhibitory effects against tested MDR bacteria, with MIC50 ranges of 74-925 μg/mL. Both ET and AC fractions also displayed remarkable antioxidant activity, with MIC50 ranges of 3-39 μg/mL. Cytotoxicity assays on HaCaT cells revealed no adverse effects from the crude extract fractions. LC-MS/MS analyses identified a diverse array of compounds, known and unknown, with antibacterial and antioxidant activities. Molecular docking simulations and pharmacological property screening highlighted two active compounds, baicalein (BCN) and lenticin (LTN), showing strong binding affinity with selected target proteins and adhering to pharmacological parameters. MDS indicated a stable interaction between the ligands (BCN and LTN) and the receptor proteins over a 100-ns simulation period. Conclusion Our study provides essential information on the nutritional profile and pharmacological potential of the peel, flesh, and seeds of SCWP. Furthermore, our findings contribute to the identification of novel antioxidants and antibacterial agents that could be capable of overcoming the resistance barrier posed by MDR bacteria.
Collapse
Affiliation(s)
- Ali Asghar
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Muhammad Shahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Malaysia
| | - Peng Gang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Naveed Ahmad Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Qiao Fang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Li Xinzheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
4
|
Nguyen QT, Nguyen TT, Le VN, Nguyen NT, Truong NM, Hoang MT, Pham TPT, Bui QM. Towards a Standardized Approach for the Geographical Traceability of Plant Foods Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Principal Component Analysis (PCA). Foods 2023; 12:1848. [PMID: 37174386 PMCID: PMC10177964 DOI: 10.3390/foods12091848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
This paper presents a systematic literature review focused on the use of inductively coupled plasma mass spectrometry (ICP-MS) combined with PCA, a multivariate technique, for determining the geographical origin of plant foods. Recent studies selected and applied the ICP-MS analytical method and PCA in plant food geographical traceability. The collected results from many previous studies indicate that ICP-MS with PCA is a useful tool and is widely used for authenticating and certifying the geographic origin of plant food. The review encourages scientists and managers to discuss the possibility of introducing an international standard for plant food traceability using ICP-MS combined with PCA. The use of a standard method will reduce the time and cost of analysis and improve the efficiency of trade and circulation of goods. Furthermore, the main steps needed to establish the standard for this traceability method are reported, including the development of guidelines and quality control measures, which play a pivotal role in providing authentic product information through each stage of production, processing, and distribution for consumers and authority agencies. This might be the basis for establishing the standards for examination and controlling the quality of foods in the markets, ensuring safety for consumers.
Collapse
Affiliation(s)
- Quang Trung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
- Institute of Environmental Science and Public Health, Vietnam Union of Science and Technology Association, Hanoi 11353, Vietnam;
| | - Thanh Thao Nguyen
- Institute of Environmental Science and Public Health, Vietnam Union of Science and Technology Association, Hanoi 11353, Vietnam;
| | - Van Nhan Le
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
- Faculty of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam
| | - Ngoc Tung Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
| | - Ngoc Minh Truong
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
| | - Minh Tao Hoang
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
| | - Thi Phuong Thao Pham
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
| | - Quang Minh Bui
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi 11353, Vietnam; (Q.T.N.); (V.N.L.); (N.T.N.); (N.M.T.); (M.T.H.); (T.P.T.P.)
| |
Collapse
|
5
|
Ahmad I, Rawoof A, Islam K, Momo J, Anju T, Kumar A, Ramchiary N. Diversity and expression analysis of ZIP transporters and associated metabolites under zinc and iron stress in Capsicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:415-430. [PMID: 36758289 DOI: 10.1016/j.plaphy.2023.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/16/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
The members of ZRT, IRT-like protein (ZIP) family are involved in the uptake and transportation of several metal ions. Here, we report a comprehensive identification of ZIP transporter genes from Capsicum annuum, C. chinense, and C. baccatum, and their expression analysis under Zn and Fe stress. Changes in root morphology and differential accumulation of several metabolites from sugars, amino acids, carboxylic acids, and fatty acids in root and leaf tissues of plants in the absence of Zn and Fe were observed. Further, metabolites such as L-aspartic acid, 2-ketoglutaric acids, β-L-fucopyranose, quininic acid, chlorogenic acid, and aucubin were significantly upregulated in root and leaf tissues under Zn/Fe deprived conditions. qRT-PCR analysis of 17 CaZIPs in different tissues revealed tissue-specific expression of CaZIP1-2, CaZIP4-8, CaZIP13, and CaZIP16-17 under normal conditions. However, the absence of Zn and Fe significantly induced the expression of CaZIP4-5, CaZIP7-9, and CaZIP14 genes in root and leaf tissues. Additionally, in the absence of Fe, upregulation of CaZIP4-5 and CaZIP8 and increased uptake of mineral elements Cu, Zn, Mg, P, and S were observed in roots, suggesting their potential role in metal-ion uptake in Capsicum. The identified genes provide the basis for future studies of mineral uptake and their biofortification to increase the nutritional values in Capsicum.
Collapse
Affiliation(s)
- Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - John Momo
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Thattantavide Anju
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
Niu X, Mi S, Jin Q, Sang Y, Wang X. Characterization and discrimination of two varieties of eggplants using multi-element and metabolomics profiles coupled with chemometrics analysis. Food Res Int 2022; 162:111976. [DOI: 10.1016/j.foodres.2022.111976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
7
|
Jaiswal V, Rawoof A, Gahlaut V, Ahmad I, Chhapekar SS, Dubey M, Ramchiary N. Integrated analysis of DNA methylation, transcriptome, and global metabolites in interspecific heterotic Capsicum F 1 hybrid. iScience 2022; 25:105318. [PMID: 36304106 PMCID: PMC9593261 DOI: 10.1016/j.isci.2022.105318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/04/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
Hybrid breeding is one of the efficacious methods of crop improvement. Here, we report our work towards understanding the molecular basis of F1 hybrid heterosis from Capsicum chinense and C. frutescens cross. Bisulfite sequencing identified a total of 70597 CG, 108797 CHG, and 38418 CHH differentially methylated regions (DMRs) across F1 hybrid and parents, and of these, 4891 DMRs showed higher methylation in F1 compared to the mid-parental methylation values (MPMV). Transcriptome analysis showed higher expression of 46–55% differentially expressed genes (DE-Gs) in the F1 hybrid. The qRT-PCR analysis of 24 DE-Gs with negative promoter methylation revealed 91.66% expression similarity with the transcriptome data. A few metabolites and 65–72% enriched genes in metabolite biosynthetic pathways showed overall increased expression in the F1 hybrid compared to parents. These findings, taken together, provided insights into the integrated role of DNA methylation, and genes and metabolites expression in the manifestation of heterosis in Capsicum. Global methylation identified significantly different proportions of mCs in hybrid Of common DMRs, 33.08% showed different methylation in hybrid from the mid-parental value Negatively correlated DEG pDMR-genes were enriched in metabolic pathways Significant higher expression of metabolites and DE-Gs were identified in the F1 hybrid
Collapse
Affiliation(s)
- Vandana Jaiswal
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Corresponding author
| | - Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vijay Gahlaut
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil S. Chhapekar
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Horticulture, Chungnam National University, Daejeon 34134, South Korea
| | - Meenakshi Dubey
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Corresponding author
| |
Collapse
|