1
|
Su YH, Wu JS, Dai YZ, Chen YT, Lin YX, Tzeng YM, Liao JW. Anti-Oxidant, Anti-Mutagenic Activity and Safety Evaluation of Antrocin. TOXICS 2023; 11:547. [PMID: 37368647 DOI: 10.3390/toxics11060547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Antrocin is a novel compound isolated from Antrodia cinnamomea, and is classified as a sesquiterpene lactone. The therapeutic efficacy of antrocin has been studied, and it has shown an antiproliferative effect on various cancers. The aim of this study was to evaluate the anti-oxidant activity, potential genotoxicity, and oral toxicity of antrocin. Ames tests with five different strains of Salmonella typhimurium, chromosomal aberration tests in CHO-K1 cells, and micronucleus tests in ICR mice were conducted. The results of anti-oxidant capacity assays showed that antrocin has great anti-oxidant activity and is a moderately strong antimutagenic agent. In the results of the genotoxicity assays, antrocin did not show any mutagenic potential. In the 28-day oral toxicity test, Sprague Dawley rats were gavaged with 7.5 or 37.5 mg/kg of antrocin for 28 consecutive days. In addition, 7.5 mg/kg sorafenib, an anti-cancer drug, was used as a positive control for toxicity comparison. At the end of the study, antrocin did not produce any toxic effects according to hematology, serum chemistry, urine analysis, or histopathological examinations. According to the results of the genotoxicity and 28-day oral toxicity study, antrocin, at a dose of 37.5 mg/kg, did not cause adverse effects and can be a reference dose for therapeutic agents in humans.
Collapse
Affiliation(s)
- Yi-Hui Su
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan
| | - Jia-Shuan Wu
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung 402, Taiwan
| | - Yan-Zhen Dai
- Research Center for Animal Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yng-Tay Chen
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung 402, Taiwan
| | - Yan-Xiu Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yew-Min Tzeng
- Department of Applied Science, National Taitung University, Taitung 950, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
2
|
Chen YF, Wu HC, Chang JM, Ko HH, Lin CH, Chang HS. Chemical investigations and cytotoxic effects of metabolites from Antrodia camphorata against human hepatocellular carcinoma cells. Nat Prod Res 2023; 37:560-570. [PMID: 35583297 DOI: 10.1080/14786419.2022.2076676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antrodia camphorata is used as a medicinal fungus in Taiwan to treat fatigue, food intoxication, and enhance liver function. Here we identified fermented metabolic components from the mycelium of A. camphorata KH37 and explored their anti-hepatoma potentials with study models of human hepatoblastoma cell lines. Bioassay-guided fractionation of the solid fermentation powder of A. camphorata KH37 led to the isolation of one new quinonol, antroquinonol Z (1), and nine known compounds (2-10). Treatment with 10 μM antrocamols LT1 (2) or LT3 (3) reduced cell viability of HepG2 and Huh-7 cells to about 60% in 48 hours. Antroquinonol Z (1) exhibited mild cytotoxicity against Huh-7 cells in 48 and 72 hours. Interestingly, two fractions showed cytotoxicity in HepG2 and Huh-7 cells, even better than compounds isolated from these fractions. The significant cytotoxicity of partially purified samples from A. camphorata KH37 exhibited a potential for developing alternative or complementary therapeutics against hepatoma.
Collapse
Affiliation(s)
- Yih-Fung Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ho-Cheng Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Min Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Horng-Huey Ko
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chu-Hung Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Metabolomic Profiling of Different Antrodia cinnamomea Phenotypes. J Fungi (Basel) 2023; 9:jof9010097. [PMID: 36675918 PMCID: PMC9861778 DOI: 10.3390/jof9010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Antrodia cinnamomea (AC) is a precious medicinal fungus with numerous therapeutic benefits. Based on the color appearance of its fruiting bodies, AC can be divided into red AC (RAC), yellow AC (YAC), and white AC (WAC); however, the differences in their metabolomic profiles remain unknown. This study aimed to analyze the metabolomic profiles of three different AC phenotypes and examine their relationship to the color appearance of fruiting bodies. The results showed that although RAC, YAC, and WAC appear to have a relatively similar profile of index triterpenoids, their total triterpenoid contents were significantly different. Among the annotated triterpenoids, many of them were highly present in RAC but not in YAC and WAC, and the relative contents of the four ergostanes (antcamphin F, antcamphin L, antcin B, and antcin K) and one lanostane (versisponic acid D) were found to be significantly different among AC phenotypes. The metabolomic profiles of the AC fruiting bodies demonstrated a total of 140 metabolites, and 41 of them were very different among AC phenotypes. This study indicates that red, yellow, and white AC can biosynthesize the diverse structures of triterpenoids, and RAC possesses a relatively higher contents of triterpenoids and diverse unannotated metabolites than YAC and WAC.
Collapse
|
4
|
Antrodia cinnamomea exerts an anti-hepatoma effect by targeting PI3K/AKT-mediated cell cycle progression in vitro and in vivo. Acta Pharm Sin B 2022; 12:890-906. [PMID: 35256953 PMCID: PMC8897033 DOI: 10.1016/j.apsb.2021.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Antrodia cinnamomea is extensively used as a traditional medicine to prevention and treatment of liver cancer. However, its comprehensive chemical fingerprint is uncertain, and the mechanisms, especially the potential therapeutic target for anti-hepatocellular carcinoma (HCC) are still unclear. Using UPLC‒Q-TOF/MS, 139 chemical components were identified in A. cinnamomea dropping pills (ACDPs). Based on these chemical components, network pharmacology demonstrated that the targets of active components were significantly enriched in the pathways in cancer, which were closely related with cell proliferation regulation. Next, HCC data was downloaded from Gene Expression Omnibus database (GEO). The Cancer Genome Atlas (TCGA) and DisGeNET were analyzed by bioinformatics, and 79 biomarkers were obtained. Furtherly, nine targets of ACDP active components were revealed, and they were significantly enriched in PI3K/AKT and cell cycle signaling pathways. The affinity between these targets and their corresponding active ingredients was predicted by molecular docking. Finally, in vivo and in vitro experiments showed that ACDPs could reduce the activity of PI3K/AKT signaling pathway and downregulate the expression of cell cycle-related proteins, contributing to the decreased growth of liver cancer. Altogether, PI3K/AKT-cell cycle appears as the significant central node in anti-liver cancer of A. Cinnamomea.
Collapse
|
5
|
A mechanistic and empirical review of antcins, a new class of phytosterols of formosan fungi origin. J Food Drug Anal 2020; 28:38-59. [DOI: 10.1016/j.jfda.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
|
6
|
Zhang BB, Guan YY, Hu PF, Chen L, Xu GR, Liu L, Cheung PCK. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: recent advances and future development. Crit Rev Biotechnol 2019; 39:541-554. [DOI: 10.1080/07388551.2019.1577798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bo-Bo Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yu-Yan Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Peng-Fei Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Lei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Gan-Rong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Peter C. K. Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|