1
|
Cao X, Liu H, Yang M, Mao K, Wang X, Chen Z, Ran M, Hao L. Evaluation of the nutritional quality of yeast protein in comparison to animal and plant proteins using growing rats and INFOGEST model. Food Chem 2025; 463:141178. [PMID: 39303477 DOI: 10.1016/j.foodchem.2024.141178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Yeast, identified as a microorganism, boasts a considerable protein content, positioning yeast protein as a highly promising alternative in the quest for sustainable protein sources. The primary aim of this study is to evaluate the protein quality of yeast protein and compare it with animal proteins (whey concentrate/isolate proteins) and plant proteins (soy, wheat, pea proteins). Notably, yeast protein exhibits the highest ratio of indispensable/dispensable amino acids (IAAs/DAAs, 0.91). However, in both in vivo and in vitro digestion experiments, yeast protein demonstrated lower true protein digestibility (TPD) and true ileal digestibility (TID) compared to other proteins. Despite this, the yeast protein's amino acid score (AAS, 1.37 for >3 years), protein digestibility-corrected amino acid score (PDCAAS, 100 % for >3 years), and digestibility-corrected amino acid score (DIAAS, 82.42 % for >3 years) of yeast protein surpassed those of plant proteins, yet remained lower than animal proteins primarily due to its lower digestibility.
Collapse
Affiliation(s)
- Xin Cao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Hongjuan Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Miao Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Kanmin Mao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Xinzheng Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Ziyu Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Mingqi Ran
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Liping Hao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China; Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
| |
Collapse
|
2
|
Wang S, Zhang L, Wang H, Liu J, Hu Y, Tu Z. Angiotensin converting enzyme (ACE) inhibitory peptide from the tuna (Thunnus thynnus) muscle: Screening, interaction mechanism and stability. Int J Biol Macromol 2024; 279:135469. [PMID: 39250996 DOI: 10.1016/j.ijbiomac.2024.135469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
In this study, the purpose was to screen novel angiotensin converting enzyme inhibitory peptides (ACEIPs) from tuna muscle taking two-steps enzymatic hydrolysis (Neutrase and Alkaline). Following isolation and purification by ultrafiltration, the Sephadex G-15 gel chromatography and reversed-phase high-performance liquid chromatography based on active-guide, the amino acid sequence was identified using Q-Orbitrap-MS/MS. Five peptides were chose synthesized based on the in silico screening methods. Among these, the two novel ACEIPs LTGCP and YPKP showed better inhibitory ability, and their corresponding IC50 values were 64.3 μM and 139.6 μM. Subsequently, the interaction mechanism of the best active peptide (LTGCP) against ACE was investigated by inhibitory pattern, molecular docking and molecular dynamic simulation. The result displayed that LTGCP was a mix-type inhibitor against ACE from the Lineweaver-Burk plots. LTGCP formed seven hydrogen bonds based on the molecular docking and the binding energy was -7.29 kcal/mol. LTGCP formed a stability complex with ACE based on the molecular dynamic simulation. Besides, LTGCP exhibited good stability in various temperature, pH and gastrointestinal digestion. Finally, the 0.125 mM ∼ 1.0 mM LTGCP exhibited no-toxic for Caco-2 cell. In summary, these findings showed that tuna was a good material to prepare ACEIPs and LTGCP may be the good potential antihypertensive drug or nutraceuticals.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Lu Zhang
- National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Jiaojiao Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
3
|
Yang G, Zhu Y, Shi J, Peng Q, Lin Z, Lv H. Effects of anaerobic treatment on the non-volatile components and angiotensin-converting enzyme (ACE) inhibitory activity of purple-colored leaf tea. Food Chem X 2024; 23:101649. [PMID: 39139484 PMCID: PMC11321371 DOI: 10.1016/j.fochx.2024.101649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
This study investigated the effect of anaerobic treatment on the non-volatile components and angiotensin-converting enzyme (ACE) inhibitory activity in purple-colored leaf tea. Results showed that after 8 h of anaerobic treatment, the γ-aminobutyric acid (GABA) content significantly increased from 0.02 mg/g to 1.72 mg/g (p < 0.05), while lactic acid content gradually rose from non-detectable levels to 3.56 mg/g. Notably, certain flavonols like quercetin and myricetin exhibited significant increments, whereas the total anthocyanins (1.01 mg/g) and epigallocatechin-3-(3''-O-methyl) gallate (13.47 mg/g) contents remained almost unchanged. Furthermore, the ACE inhibition rate of purple-colored leaf tea increased significantly from 42.16% to 49.20% (p < 0.05) at a concentration of 2 mg/mL. Moreover, galloylated catechins showed stronger ACE inhibitory activity than non-galloylated catechins in both in vitro ACE inhibitory activity and molecular docking analysis. These findings might contribute to the development of special purple-colored leaf tea products with potential therapy for hypertension.
Collapse
Affiliation(s)
- Gaozhong Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yin Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiang Shi
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qunhua Peng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhi Lin
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haipeng Lv
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
4
|
Zou Z, Xiao N, Chen Z, Lin X, Li Y, Li P, Cheng Q, Du B. Yeast Extract Peptides Alleviate Depression in Chronic Restraint Stress Rats by Alleviating Hippocampal Neuronal Apoptosis and Dysbiosis of the Gut Microbiota. Mol Nutr Food Res 2024:e2300467. [PMID: 39432823 DOI: 10.1002/mnfr.202300467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/22/2024] [Indexed: 10/23/2024]
Abstract
SCOPE Depression as a global neurological disorder, and hippocampal neuronal apoptosis and disorders of the gut microbiota are closely related to it. This study aims to expose the ameliorative effect of enzyme peptides (AP) from brewer's yeast on depressive behavior caused by chronic restraint stress (CRS) in rats. METHODS AND RESULTS After 4 weeks of AP intervention, a significant alleviation of depressive behavior in the sucrose preference test (SPT), forced swim test (FST), and light-dark test (LDT) is observed in depressed rats. AP ameliorates neuronal damage with increased the expression of the key CREB/BDNF/TrkB/Akt signaling pathway, which increases the levels of the monoamine neurotransmitters 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in the hippocampus, buffering hyperactivity of the hypothalamo-pituitary-adrenal axis (HPA), and decreasing the serum cortisol (CORT) and adrenocorticotropic hormone (ACTH) levels in rats. In addition, AP modulates the disruption of the rat gut microbiota by chronic restraint stress (CRS), and the changes in the abundance of Lactobacillus animalis and Lactobacillus johnsonii are probably the key for AP performing antidepressant benefits. A strong correlation is found between gut microbiota and biochemical markers of depression. CONCLUSION AP, as a natural and safe active substance, has a positive effect in the treatment of depression.
Collapse
Affiliation(s)
- Zebin Zou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Nan Xiao
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Zhixian Chen
- Hubei Provincial Key Laboratory of Yeast Function, Yichang Engineering Technology Research Center of Nutrition and Health Food, Yichang, 443003, China
| | - Xucong Lin
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Yaqi Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| | - Qian Cheng
- Hubei Provincial Key Laboratory of Yeast Function, Yichang Engineering Technology Research Center of Nutrition and Health Food, Yichang, 443003, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
5
|
Cruz-Casas DE, Ramos-González R, Prado-Barragán LA, Iliná A, Aguilar CN, Rodríguez-Herrera R, Tsopmo A, Flores-Gallegos AC. Protein hydrolysates with ACE-I inhibitory activity from amaranth seeds fermented with Enterococcus faecium-LR9: Identification of peptides and molecular docking. Food Chem 2024; 464:141598. [PMID: 39413603 DOI: 10.1016/j.foodchem.2024.141598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
One of the causes of hypertension is the activity of angiotensin-I converting enzyme (ACEI), making its inhibition a crucial strategy for controlling the disease. Protein hydrolysates are a known source of bioactive peptides that contribute to ACE-I inhibition. This study aims to evaluate the ACE-I inhibitory activity of amaranth seed hydrolysates after fermentation with Enterococcus faecium-LR9 and to compare it with Leuconostoc mesenteroides-18C6 and enzymatic hydrolysis (Alcalase®). The fermentation strategy with LR9 proved to be more effective in inhibiting ACE-I (79.1 ± 2.6 %) in vitro compared to 18C6 (68.0 ± 9.8 %) and enzymatic hydrolysis (69.4 ± 1.2 %). Consequently, these protein hydrolysates were subjected to in silico analysis, identifying 125 novel peptides. Bioinformatics and molecular docking analyses revealed 10 peptides with high ACE-I inhibitory potential. Among them, the IFQFPKTY and VIKPPSRAW peptides stood out. Therefore, E. faecium-LR9 is a promising strain for the release of bioactive peptides from seed storage proteins.
Collapse
Affiliation(s)
- Dora Elisa Cruz-Casas
- School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Rodolfo Ramos-González
- CONAHCYT-Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Lilia Arely Prado-Barragán
- Biotechnology Department, Biological. Health Sciences Division, Universidad Autónoma Metropolitana, Iztapalapa Campus, 09340 Ciudad de México, Mexico
| | - Anna Iliná
- Nanobioscience Group, School of Chemistry, Universidad Autónoma de Coahuila. Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Cristóbal N Aguilar
- School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Raúl Rodríguez-Herrera
- School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico
| | - Apollinaire Tsopmo
- Food Science Program, Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada..
| | - Adriana Carolina Flores-Gallegos
- School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing. José Cárdenas Valdés s/n Col. República, 25280 Saltillo, Coahuila, Mexico.
| |
Collapse
|
6
|
Lee CH, Hamdan N, Nyakuma BB, Wong SL, Wong KY, Tan H, Jamaluddin H, Lee TH. Purification, identification and molecular docking studies of antioxidant and anti-inflammatory peptides from Edible Bird's Nest. Food Chem 2024; 454:139797. [PMID: 38797099 DOI: 10.1016/j.foodchem.2024.139797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
This study investigated antioxidant and anti-inflammatory peptides from Edible Bird's Nest (EBN). The prepared EBN peptides were sequentially separated, purified, and successively identified by ultrafiltration, gel filtration and mass spectrometry techniques. Four potential antioxidant and anti-inflammatory peptides were identified as Peptide 1 (LFWSPSVYLK), Peptide 2 (GWPHLEDNYLDW), Peptide 3 (NPPADLHK) and Peptide 4 (GDLAYLDQGHR). Molecular docking analysis revealed that Peptide 1 and Peptide 2 can competitively interrupt the formation of Keap1-Nrf2 due to the presence of hydrophobic and antioxidant amino acids in their peptide sequences. Peptide 3 and Peptide 4 have a strong effect on interacting with the binding site of IKK-β due to the interaction of anti-inflammatory amino acids and C-terminal arginine/lysine. The four peptides were synthesised and validated for their antioxidant and anti-inflammatory activities. The results suggest that the four peptides may serve as promising bioactive peptides for preventing oxidative stress and inflammation-related diseases.
Collapse
Affiliation(s)
- Chia Hau Lee
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Norfadilah Hamdan
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Bemgba Bevan Nyakuma
- Department of Chemical Sciences, Faculty of Science & Computing, North-Eastern University, 0198 Gombe, Gombe State, Nigeria
| | - Syie Luing Wong
- Department of Chemical Engineering & Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Huiyi Tan
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ting Hun Lee
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
7
|
Meng L, Yu D, Lin J, Hu Y, Peng N, Zhao S. Structural characterization, HepG2 cell cytoprotective ability, and antioxidant mechanism of novel antioxidant peptides identified from black soldier fly larvae (Hermetia illucens L.). Food Chem 2024; 463:141462. [PMID: 39357311 DOI: 10.1016/j.foodchem.2024.141462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/01/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
This study isolated a novel antioxidant peptide from black soldier fly larvae (BSFL) using enzymatic hydrolysis. Firstly, the BSFL enzymatic hydrolysate was fractionated through ultrafiltration, with the <3 kDa fraction exhibiting the strongest DPPH and ABTS radical scavenging activity. Subsequently, this fraction was further fractionated through gel filtration chromatography and RP-HPLC. Totally, 153 peptides were identified through LC-MS/MS analysis, from which a novel peptide EDEGTYKCVLS (Pep6) was screened according to activity prediction and verification. Pep6 exhibited high radical scavenging capacity and cytoprotective effect on HepG2 cells against H2O2 damage, meanwhile significantly increasing the intracellular antioxidant enzymes activity. Molecular docking analysis indicated that Pep6 competitively bound to Keap1, thereby inhibiting the formation of Keap1-Nrf2 complex, ultimately protecting cells from oxidative stress damage. In this study, a novel antioxidant peptide Pep6 was identified from BSFL, and its antioxidant mechanism was elucidated, providing a theoretical basis for its use as a natural antioxidant.
Collapse
Affiliation(s)
- Leying Meng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dandan Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianan Lin
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongmei Hu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Nan Peng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shumiao Zhao
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
8
|
Mohan Prakash RL, Ravi DA, Hwang DH, Kang C, Kim E. Identification of New Angiotensin-Converting Enzyme Inhibitory Peptides Isolated from the Hydrolysate of the Venom of Nemopilema nomurai Jellyfish. Toxins (Basel) 2024; 16:410. [PMID: 39330868 PMCID: PMC11435582 DOI: 10.3390/toxins16090410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Recently, jellyfish venom has gained attention as a promising reservoir of pharmacologically active compounds, with potential applications in new drug development. In this investigation, novel peptides, isolated from the hydrolysates of Nemopilema nomurai jellyfish venom (NnV), demonstrate potent inhibitory activities against angiotensin-converting enzyme (ACE). Proteolytic enzymes-specifically, papain and protamex-were utilized for the hydrolysis under optimized enzymatic conditions, determined by assessing the degree of hydrolysis through the ninhydrin test. Comparative analyses revealed that papain treatment exhibited a notably higher degree of NnV hydrolysis compared to protamex treatment. ACE inhibitory activity was quantified using ACE kit-WST, indicating a substantial inhibitory effect of 76.31% for the papain-digested NnV crude hydrolysate, which was validated by captopril as a positive control. The separation of the NnV-hydrolysate using DEAE sepharose weak-anion-exchange chromatography revealed nine peaks under a 0-1 M NaCl stepwise gradient, with peak no. 3 displaying the highest ACE inhibition of 96%. The further purification of peak no. 3 through ODS-C18 column reverse-phase high-performance liquid chromatography resulted in five sub-peaks (3.1, 3.2, 3.3, 3.4, and 3.5), among which 3.2 exhibited the most significant inhibitory activity of 95.74%. The subsequent analysis of the active peak (3.2) using MALDI-TOF/MS identified two peptides with distinct molecular weights of 896.48 and 1227.651. The peptide sequence determined by MS/MS analysis revealed them as IVGRPLANG and IGDEPRHQYL. The docking studies of the two ACE-inhibitory peptides for ACE molecule demonstrated a binding affinity of -51.4 ± 2.5 and -62.3 ± 3.3 using the HADDOCK scoring function.
Collapse
Affiliation(s)
| | - Deva Asirvatham Ravi
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Du Hyeon Hwang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changkeun Kang
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Euikyung Kim
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
9
|
Lin S, Zhang Y, Ye P, Zhao H, Yang K, Hao G. Oyster ( Ostrea Plicatula Gmelin) Peptides Improve Exercise Endurance Capacity via Activating AMPK and HO-1. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:437-451. [PMID: 38305833 DOI: 10.1080/27697061.2024.2306516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVE Previous studies have shown that oyster peptides (OPs) have antioxidant and anti-fatigue activities. This study aimed to investigate the effects of OPs on swimming endurance in mice and the underlying mechanisms. METHODS The mice were subjected to gavage with OPs and subjected to exercise training. After 14 days, various biochemical indicators in the blood and gastrocnemius muscle of mice were assessed, and real-time PCR was utilized to detect the level of signal pathway regulation by OPs in the gastrocnemius muscle. Molecular docking technology was employed to observe the potential active components in OPs that regulate signal pathways. RESULTS In this study, OPs supplementation combined with and without exercise significantly extended swimming time compared to the sedentary group. OPs supplementation with exercise also increased glycogen levels and decreased blood urea nitrogen, lactate dehydrogenase, and lactic acid levels. Additionally, mice in the exercise with OPs group exhibited higher activities of antioxidant enzymes. OPs can upregulate metabolic regulatory factors such as AMP-activated protein kinase, peroxisome proliferator-activated receptor gamma coactivator-1 alpha, peroxisome proliferator-activated receptor delta, and glucose transporter 4, thereby increasing energy supply during exercise. Additionally, OPs enhances the expression of heme oxygenase 1 and superoxide dismutase 2, thereby reducing oxidative stress during physical activity. Molecular docking analyses revealed that peptides found in OPs formed hydrogen bonds with AMPK and HO-1, indicating that they can exert bioactivity by activating target proteins such as AMPK and HO-1. CONCLUSIONS OPs supplementation improved energy reserves, modulated energy metabolism pathways, and coordinated antioxidative stress responses, ultimately enhancing swimming endurance. These findings suggest that OPs have the potential to improve exercise levels by promoting metabolism and improving energy utilization efficiency.
Collapse
Affiliation(s)
- Shuting Lin
- Central Laboratory, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Yuni Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Peng Ye
- Technology Center, Xiamen Customs District P. R. China, Xiamen, China
| | - Houhua Zhao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Keyu Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Gengxin Hao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
10
|
Rodríguez Longarela N, Paredes Ramos M, López Vilariño JM. Bioinformatics tools for the study of bioactive peptides from vegetal sources: evolution and future perspectives. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38907628 DOI: 10.1080/10408398.2024.2367571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Bioactive peptides from vegetal sources have been shown to have functional properties as anti-inflammatory, antioxidant, antihypertensive or antidiabetic capacity. For this reason, they have been proposed as an interesting and promising alternative to improve human health. In recent years, the numerous advances in the bioinformatics field for in silico prediction have speeded up the discovery of bioactive peptides, also reducing the associated costs when using an integrated approach between the classical and bioinformatics discovery. This review aims to provide an overview of the evolution, limitations and latest advances in the field of bioinformatics and computational tools, and specifically make a critical and comprehensive insight into computational techniques used to study the mechanism of interaction that allows the explanation of plant bioactive peptide functionality. In particular, molecular docking is considered key to explain the different functionalities that have been previously identified. The assumptions to simplify such a high complex environment implies a degree of uncertainty that can only be guaranteed and validated by in vitro or in vivo studies, however, the combination of databases, software and bioinformatics applications with the classical approach has become a promising procedure for the study of bioactive peptides.
Collapse
|
11
|
Chen B, Wang X, Zhang J, Wang L. Peptidomics-based study of antihypertensive activity: discovery of novel ACE inhibiting peptides from peanut yogurt. Food Funct 2024; 15:6705-6716. [PMID: 38832529 DOI: 10.1039/d4fo00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Studies have confirmed that yogurt has the activity of regulating blood pressure because it is rich in probiotic-fermented food-derived active peptides. There are also studies on angiotensin-converting enzyme inhibition (ACEI) peptide milk, but the bioactive molecules in it are still unclear. Therefore, in this study, we developed a peanut yogurt with ACEI activity, analyzed 1877 differential peptides and their antihypertensive pathways before and after fermentation using peptidomics, and identified three peptides (FLPYPY, QPPPSPPPFL and APFPEVFGK) with potential antihypertensive activity using molecular docking and chemical synthesis techniques. These results first elucidated the relationship between peanut yogurt peptides and antihypertensive function, demonstrated the benefits of peanut yogurt, and provided a theoretical basis for the application of probiotic fermented plant yogurt in health care.
Collapse
Affiliation(s)
- Baiyan Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoying Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jiuyan Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
12
|
Zhao Y, Liu X, Zhang S, Wang Z, Tian S, Wu Q. Identification and Free Radical Scavenging Activity of Oligopeptides from Mixed-Distillate Fermented Baijiu Grains and Soy Sauce Residue. Metabolites 2024; 14:298. [PMID: 38921433 PMCID: PMC11205538 DOI: 10.3390/metabo14060298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 06/27/2024] Open
Abstract
This study aimed to explore the potential antioxidant activity and mechanism of oligopeptides from sauce-aroma Baijiu. The oligopeptides of Val-Leu-Pro-Phe (VLPF), Pro-Leu-Phe (PLF), Val-Gly-Phe-Cys (VGFC), Leu-Tyr-Pro (LYP), Leu-Pro-Phe (LPF), and Phe-Thr-Phe (FTF) were identified by liquid chromatography-mass spectrometry (LC-MS) from the mixed-distillate of Baijiu fermented grains and soy sauce residue (MDFS). The antioxidant mechanism of these oligopeptides on scavenging DPPH•, ABTS•+, and hydroxide radicals was investigated, respectively. Among them, VGFC had the strongest potential antioxidant activity, which was responsible for its hydrogen bonds with these radicals with high affinity. The binding energies between VGFC and these radicals were -1.26 kcal/mol, -1.33 kcal/mol, and -1.93 kcal/mol, respectively. Additionally, free radicals prefer to bind the oligopeptide composed of hydrophobic amino acid residues such as Leu, Val, Phe, and Pro, thus being scavenged for exerting antioxidant activity. It provided a new idea for the development and utilization of bioactive oligopeptides in sauce-aroma Baijiu.
Collapse
Affiliation(s)
- Yunhao Zhao
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (X.L.); (S.Z.); (Z.W.); (S.T.)
- Hunan Key Laboratory of New Technology and Application of Ecological Brewing, Shaoyang 422000, China
| | - Xiangyue Liu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (X.L.); (S.Z.); (Z.W.); (S.T.)
- Hunan Key Laboratory of New Technology and Application of Ecological Brewing, Shaoyang 422000, China
| | - Sijie Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (X.L.); (S.Z.); (Z.W.); (S.T.)
- Hunan Key Laboratory of New Technology and Application of Ecological Brewing, Shaoyang 422000, China
| | - Zhengwei Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (X.L.); (S.Z.); (Z.W.); (S.T.)
- Hunan Key Laboratory of New Technology and Application of Ecological Brewing, Shaoyang 422000, China
| | - Shanlin Tian
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (X.L.); (S.Z.); (Z.W.); (S.T.)
- Hunan Key Laboratory of New Technology and Application of Ecological Brewing, Shaoyang 422000, China
| | - Qiang Wu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.Z.); (X.L.); (S.Z.); (Z.W.); (S.T.)
- Hunan Key Laboratory of New Technology and Application of Ecological Brewing, Shaoyang 422000, China
- Shaoyang Engineering Technology Research Center of Functional Fertilizer, Shaoyang 422002, China
| |
Collapse
|
13
|
Ma C, Wu X. Cyperus peptide SFRWQ inhibits oxidation and inflammation in RAW264.7 cell model. Int J Biol Macromol 2024; 267:131272. [PMID: 38565370 DOI: 10.1016/j.ijbiomac.2024.131272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Oxidative stress can induce many diseases. Antioxidant peptides from food sources have the advantages of good safety, high activity, and good absorbability. In this study, a pentapeptide (SFRWQ; SER-PHE-ARG-TRP-GLN) was identified in a protein hydrolysate of Cyperus (Cyperus esculentus L.). Enzyme-linked immunosorbent assay (ELISA), real-time quantitative (qPCR), immunofluorescence and other techniques were used to evaluate the anti-inflammatory and antioxidant effects of SFRWQ. SFRWQ was found to have 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging ability, help increase superoxide dismutase (SOD) and catalase (CAT) levels in RAW264.7 cells, reduce reactive oxygen species (ROS) levels, and decrease tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) gene expression and secretion. The binding score of SFRWQ to recombinant Kelch-like ECH-associated protein 1 (Keap1) was greater than that of TX6. These findings suggest that SFRWQ activates the Keap1-Nrf2 cellular antioxidant signaling pathway. According to metabolomics studies, SFRWQ increased glutathione (GSH), glutathione disulfide (GSSG), and γ-glutamylcysteine levels and decreased the levels of Prostaglandin D2 (PGD2), Prostaglandin E2 (PGE2), and Prostaglandin H2 (PGH2), which are involved in arachidonic acid metabolism, to protect cells from LPS-induced damage. By elucidating the mechanism of action of SFRWQ, we provide a reference for the development of dietary antioxidant peptides.
Collapse
Affiliation(s)
- Chaoyue Ma
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010000, PR China
| | - Xiaotong Wu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010000, PR China.
| |
Collapse
|
14
|
Chen W, Li W, Wu D, Zhang Z, Li Z, Li L, Wu T, Yang Y. Exploring of multi-functional umami peptides from Stropharia rugosoannulata: Saltiness-enhancing effect and mechanism, antioxidant activity and potential target sites. Food Chem 2024; 439:138138. [PMID: 38134569 DOI: 10.1016/j.foodchem.2023.138138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
Umami peptides enhance flavor and offer potential health benefits. We analyzed the taste-value profiles of five novel umami peptides from Stropharia rugosoannulata using E-tongue, exhibiting significant saltiness characteristics. While the peptides PHEMQ and SEPSHF exhibited higher saltiness, their mixture with salt did not enhance saltiness compared to individual peptides. Surprisingly, SGCVNEL, which was initially weak in saltiness, showed remarkably enhanced saltiness when mixed with salt, possibly due to have strong binding with receptors. Molecular docking elucidated the salt-forming mechanism of TMC4, highlighting the P2-domain and hydrogen bonds' role in the composite structure stability. Evaluation of the antioxidant activity evaluation demonstrated dose-dependent effects primarily through free radical scavenging via the single-electron transfer potential mechanism for SGCVNEL, EPLCNQ, and ESCAPQL. Docking experiments with antioxidant targets revealed varied binding stabilities, indicating diverse antioxidant effects of the peptides. These findings provide valuable insights into the exploration and application of versatile bioactive flavor peptides.
Collapse
Affiliation(s)
- Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China
| | - Long Li
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, Henan, PR China
| | - Ting Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, and Research Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agriculture Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, PR China.
| |
Collapse
|
15
|
Wei G, Wang T, Li Y, He R, Huang A, Wang X. Identification, structural characterization, and molecular dynamic simulation of ACE inhibitory peptides in whey hydrolysates from Chinese Rushan cheese by-product. Food Chem X 2024; 21:101211. [PMID: 38384691 PMCID: PMC10878854 DOI: 10.1016/j.fochx.2024.101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
To realize the high-value utilization of Rushan cheese by-product, Rushan cheese whey was used as a raw material to prepare angiotensin-Ⅰ-converting enzyme inhibitory peptides (ACEIPs). After enzymatic hydrolysisn and ultrafiltration, the sequences of peptides were identified by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Two novel ACE inhibitory peptides Phe-Asp-Arg-Pro-Phe-Leu (FDRPFL) and Lys-Trp-Glu-Lys-Pro-Phe (KWEKPF) were identified. Additionally, both of the peptides exhibited good water-solubility and no toxicity according to in-silico prediction. Fourier transform infrared spectroscopy results show that both FDRPFL and KWEKPF were enriched in β-turn and β-sheet structures. Lineweaver-Burk plots revealed that FDRPFL and KWEKPF exhibited non-competitive and mixed inhibition patterns, respectively. Molecular docking and MD simulation showed that hydrogen bonds and ionic bonds forces allowed FDRPFL and KWEKPF to form stable and compact complexes with ACE. In conclusion, enzymatic hydrolysis of Rushan cheese by-products yields bioactive peptides, increases the added value of whey and reduces environmental pollution.
Collapse
Affiliation(s)
- Guangqiang Wei
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Teng Wang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yiyan Li
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Rong He
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, Jiangsu, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuefeng Wang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
16
|
Wang S, Zhang L, Wang H, Hu Z, Xie X, Chen H, Tu Z. Identification of novel angiotensin converting enzyme (ACE) inhibitory peptides from Pacific saury: In vivo antihypertensive effect and transport route. Int J Biol Macromol 2024; 254:127196. [PMID: 37793525 DOI: 10.1016/j.ijbiomac.2023.127196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Nature food-derived angiotensin converting enzyme inhibitory peptides (ACEIPs) can be potent and safe therapeutics for many medical illnesses, particularly hypertension. In this study, novel ACEIPs were screened and identified from Pacific saury by bio-activity guided approach through ultrafiltration membrane, Sephadex G-25 and RP-HPLC. The antihypertensive effect of ultrafiltration fraction was confirmed with spontaneous hypertensive rats' (SHRs) model. The peptides sequences of which gave the best activity was identified by Q-Orbitrap-MS/MS and selectively synthesized based on the binding energy of molecular docking. Five peptides VVLASLK, LTLK, LEPWR, ELPPK and LPTEK were synthesized, and the peptide LEPWR (IC50 = 99.5 μM) showed the best ACE inhibitory ability. Furthermore, LEPWR against ACE in a mixed competitive pattern and formed six hydrogen bonds with ACE. Additionally, the apparent permeability coefficient (Papp) of LEPWR was 3.56 ± 0.14 × 10-6 cm/s and paracellular transport across tight junctions was the main pathway across the Caco-2 monolayer. Therefore, the Pacific saury is a good material to prepare ACEIPs, but antihypertensive mechanism of peptide LEPWR on SHRs needs further investigation.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Lu Zhang
- National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Zizi Hu
- National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xing Xie
- National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Haiqi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center for conventional Freshwater Fish Processing, Jiangxi Normal University, Nanchang 330022, China; Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
17
|
Hsieh CC, Yu SH, Kuo HC, Khumsupan D, Huang HC, Liou YW, Kao CY, Shen SC, Cheng KC. Glycine-rich peptides from fermented Chenopodium formosanum sprout as an antioxidant to modulate the oxidative stress. J Food Drug Anal 2023; 31:626-638. [PMID: 38526824 PMCID: PMC10962670 DOI: 10.38212/2224-6614.3476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/25/2023] [Indexed: 03/27/2024] Open
Abstract
Rhizopus oligosporus was utilized in the solid-state fermentation of Chenopodiumformosanumsprouts (FCS) in a bioreactor. Subsequently, the antioxidant activity of food proteins derived from FCS was investigated. Results showed that glycine-rich peptide (GGGGGKP, G-rich peptide), identified from the <2 kDa FCS proteins, had antioxidant values. According to SwissADME, AllerTOP, ToxinPred, and BIOPEP-UWM analyses, G-rich peptide was identified as safe, non-toxic, and non-allergenic. Afterward, the peptide was examined using in silico and in vitro studies to evaluate its potential alleviating oxidative stress caused by particulate matter. This study proposed plausible mechanisms that involve the binding of G-rich peptide which inhibited phosphorylation of the v-rel avian reticuloendotheliosis viral oncogene homologA(RELA) subunit onNF-κB pathway. The inhibition then resulted in down regulation of NF-κB transcription and genetic expression of inflammatory responses. These findings suggested that G-rich peptide from FCS proteins can potentially alleviate oxidative stress.
Collapse
Affiliation(s)
- Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei,
Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei,
Taiwan
| | - Hsing-Chun Kuo
- Division of Basic Medical Sciences, Department of Nursing, Chang Gung University of Science and Technology, Chiayi,
Taiwan
- Research Fellow, Chang Gung Memorial Hospital, Chiayi 613016,
Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324,
Taiwan
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 613016,
Taiwan
| | - Darin Khumsupan
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei,
Taiwan
| | - Hsiao-Chu Huang
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei,
Taiwan
| | - Yu-Wei Liou
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei,
Taiwan
| | - Chen-Yu Kao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei,
Taiwan
| | - Szu-Chuan Shen
- Undergraduate and Graduate Programs of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei,
Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei,
Taiwan
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei,
Taiwan
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung,
Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung,
Taiwan
| |
Collapse
|
18
|
Jeong S, Jung JH, Jung KW, Ryu S, Lim S. From microbes to molecules: a review of microbial-driven antioxidant peptide generation. World J Microbiol Biotechnol 2023; 40:29. [PMID: 38057638 DOI: 10.1007/s11274-023-03826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Oxidative stress, arising from excess reactive oxygen species (ROS) or insufficient antioxidant defenses, can damage cellular components, such as lipids, proteins, and nucleic acids, resulting in cellular dysfunction. The relationship between oxidative stress and various health disorders has prompted investigations into potent antioxidants that counteract ROS's detrimental impacts. In this context, antioxidant peptides, composed of two to twenty amino acids, have emerged as a unique group of antioxidants and have found applications in food, nutraceuticals, and pharmaceuticals. Antioxidant peptides are sourced from natural ingredients, mainly proteins derived from foods like milk, eggs, meat, fish, and plants. These peptides can be freed from their precursor proteins through enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Previously published studies focused on the origin and production methods of antioxidant peptides, describing their structure-activity relationship and the mechanisms of food-derived antioxidant peptides. Yet, the role of microorganisms hasn't been sufficiently explored, even though the production of antioxidant peptides frequently employs a variety of microorganisms, such as bacteria, fungi, and yeasts, which are recognized for producing specific proteases. This review aims to provide a comprehensive overview of microorganisms and their proteases participating in enzymatic hydrolysis and microbial fermentation to produce antioxidant peptides. This review also covers endogenous peptides originating from microorganisms. The information obtained from this review might guide the discovery of novel organisms adept at generating antioxidant peptides.
Collapse
Affiliation(s)
- Soyoung Jeong
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Kwang-Woo Jung
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangyong Lim
- Radiation Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
- Department of Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
19
|
Zhong W, He J, Huang W, Yin G, Liu G, Cao Y, Miao J. Effect of the phosphorylation structure in casein phosphopeptides on the proliferation, differentiation, and mineralization of osteoblasts and its mechanism. Food Funct 2023; 14:10107-10118. [PMID: 37874279 DOI: 10.1039/d3fo03125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Our previous studies have shown that highly phosphorylated casein phosphopeptides (residues 1-25) P5 could efficiently bind calcium and promote intestinal calcium absorption, and enhanced bone development in rats. The purpose of this study was to investigate the effect of the phosphorylation structure in P5 on the proliferation, differentiation, and mineralization of osteoblasts (MC3T3-E1) and its mechanism. P5 was obtained by high-performance liquid chromatography (HPLC) and non-phosphorylated peptide P5-0 was obtained by chemical synthesis. Compared with the control group, the proliferation rate of MC3T3-E1 cells treated by P5 was 1.10 times that of P5-0 at 200 μg mL-1. P5 caused the cell cycle retention of MC3T3-E1 cells in the G2/M phase, while P5-0 had no significant difference in the G2/M phase. MC3T3-E1 cells incubated with P5 showed stronger alkaline phosphatase (ALP) activity than with P5-0, suggesting a tendency to promote cellular differentiation. Compared to the P5-0 treatment group, the P5 treatment group at concentrations of 10 μg mL-1 showed significant differences in the mineralization rates (p < 0.05). P5 significantly upregulated the expressions of Runx2, ALP, ColIα1, and OCN compared with the control group (p < 0.05). In addition, in silico molecular docking showed that the binding force of the P5-EGFR complex was stronger than that of the P5-0-EGFR complex, which was significantly related to the phosphorylation structure in P5 and might be an important reason for osteoblast proliferation. In conclusion, the phosphorylation structure and amino acid composition in P5 stimulated the osteogenic activity of MC3T3-E1 cells, and could be expected to be a functional food for the prevention of osteoporosis.
Collapse
Affiliation(s)
- Wanying Zhong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jian He
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou, Guangdong Province 510663, China
| | - Wen Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Guangling Yin
- BYHEALTH Institute of Nutrition & Health, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Huangpu District, Guangzhou, Guangdong Province 510663, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
20
|
Cui Y, Guo P, Ning M, Yue Y, Yuan Y, Yue T. Kluyveromyces marxianus supplementation ameliorates alcohol-induced liver injury associated with the modulation of gut microbiota in mice. Food Funct 2023; 14:9920-9935. [PMID: 37853829 DOI: 10.1039/d3fo01796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The aim of this study was to evaluate the intervention effect of the potential probiotic Kluyveromyces marxianus YG-4 isolated from Tibetan kefir grains on alcoholic liver disease (ALD). Eight-week-old male C57BL/6J mice were fed with a Lieber-DeCarli (LDC) diet containing ethanol with a progressively increasing concentration from 1% to 4% (vol/vol) to establish an ALD mouse model. Our results suggested that K. marxianus treatment improved ALD, as demonstrated by the reduction of serum ALT and AST levels and the suppression of TLR4/NF-κB-mediated inflammatory response in the liver. K. marxianus administration significantly elevated antioxidant activities of SOD, CAT and GSH-Px, and reduced the MDA level in mice. K. marxianus supplementation repaired the gut barrier by increasing tight junction proteins and the number of goblet cells in the colon of ALD mice. In addition, treatment with K. marxianus restored alcohol-induced gut dysbiosis. Specifically, K. marxianus administration depleted the abundance of Lactobacillus, Coriobacteriaceae_UCG-002 and Candida, while increased that of Allobaculum, Dubosiella and Epicoccum in mice. Our findings open new possibilities for K. marxianus application in ALD treatment.
Collapse
Affiliation(s)
- Yuanyuan Cui
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| | - Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| | - Mengge Ning
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
| | - Yuan Yue
- Xi'an Gaoxin No. 1 High School, Xi'an, 710119, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China.
- College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| |
Collapse
|
21
|
Wang J, Shao B, Li J, Wang Z, Zhang M, Jia L, Yu P, Ma C. Identification and In Silico Analysis of ACE-Inhibitory Peptides Derived from Milk Fermented by Lacticaseibacillus paracasei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12462-12473. [PMID: 37578765 DOI: 10.1021/acs.jafc.2c09148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Inhibition of angiotensin I-converting enzyme (ACE) activity is an effective way to treat hypertension. In the present study, the ability to produce ACE-inhibitory peptides during fermentation of skimmed milk by the Lacticaseibacillus paracasei M3 strain was evaluated, and the inhibitory mechanism and stability were studied by bioinformatics analysis. The results showed that the ACE inhibition activity of fermented milk was 71.94 ± 1.39%. After digestion with gastric juice and pancreatic juice, the ACE inhibitory activities of the fermented milk were 78.40 ± 1.93 and 74.96 ± 1.73%, respectively. After the fermented milk was purified using ultrafiltration and gel chromatography, 11 peptides from milk proteins were identified and sequenced by Nano LC-MS/MS. Molecular docking displayed that peptide PWIQPK had a high affinity, with ACE showing a binding energy of -6.10 kcal/mol. Hydrogen bonds were formed between PWIQPK and Glu384 in the S1 active pocket of ACE and Asp358. In addition, van der Waals forces were observed. In silico proteolysis suggested that PWIQPK could resist the digestion of pepsin and trypsin, indicating that it is relatively stable in the digestive tract. All results indicate that milk fermented by L. paracasei M3 has the potential to be used as a functional food having antihypertensive effects.
Collapse
Affiliation(s)
- Jiaxu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Boyue Shao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiaxin Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhimin Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mixia Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lili Jia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
22
|
Qiu Y, Ying J, Yan F, Yu H, Zhao Y, Li H, Xia S, Chen J, Zhu J. Novel antiosteoporotic peptides purified from protein hydrolysates of taihe black-boned silky fowl: By larval zebrafish model and molecular docking. Food Res Int 2023; 169:112850. [PMID: 37254422 DOI: 10.1016/j.foodres.2023.112850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
The black-boned silky fowl (BSF) muscle protein hydrolysate was gained by alcalase. The hydrolysate could stimulate MC3T3-E1 cell proliferation, as well as enhance alkaline phosphatas (ALP) activity and deposits of minerals. After isolation and purification, 55 peptide sequences with Mascot score over 40 were identified. Combined with molecular docking simulation and molecular dynamics analysis, two novel peptides (PASTGAAK and PGPPGTPF) were identified with the lowest binding energy of -4.99 kcal/mol and -3.07 kcal/mol with receptor BMPR1A of BMP-2/Smad pathway, showing the ability to increase BMPR1A stability. Moreover, both PASTGAAK and PGPPGTPF revealed strong anti-osteoporosis activities in the zebrafish model induced by dexamethasone. Additionally, the identified peptides could be beneficial for the differentiation of MC3T3-E1 cell for upregulating the expression of some osteoblast-related genes and proteins by stimulating BMP-2/Smad pathway. Overall, the two newly identified peptides could be the potential candidate to prevent osteoporosis.
Collapse
Affiliation(s)
- Yang Qiu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianyue Ying
- Zhejiang University Hospital, Hangzhou 310027, China
| | - Fujie Yan
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huilin Yu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yan Zhao
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Honghao Li
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shengyao Xia
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jianchu Chen
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Engineering Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
23
|
Kong Y, Feng M, Sun J. Novel antioxidant peptides in fermented pork sausage: Purification, characterization, and cytoprotective functions on Caco-2 cells. Food Chem 2023; 426:136566. [PMID: 37331140 DOI: 10.1016/j.foodchem.2023.136566] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
In this study, crude peptides from fermented sausages inoculated with Lactobacillus plantarum CD101 and Staphylococcus simulans NJ201 were initially separated by ultrafiltration and molecular-sieve chromatography. The obtained fractions with high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and ferric-reducing antioxidant power values (MWCO-1 and fraction A) were used in Caco-2 cells to evaluate their cytoprotective effect on oxidative damage triggered by H2O2. MWCO-1 and A showed slight cytotoxicity. Increased glutathione peroxidase, catalase, and superoxide dismutase activities and decreased malondialdehyde content were observed in the peptide-treated groups. Fraction A was further purified using reversed high-performance liquid chromatography. Eighty potential antioxidant peptides were identified by liquid chromatography with tandem mass spectrometry, and fourteen antioxidant peptides were synthesized. SDEEVEH and FAGDDAPR showed strong DPPH radical scavenging activity, whereas ALELDSNLYR and QEYDESGPSIVHR presented strong ABTS+· scavenging activity. These peptides might have great potential for food and pharmacological applications.
Collapse
Affiliation(s)
- Yawen Kong
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Meiqin Feng
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210038, PR China.
| | - Jian Sun
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
24
|
Wang W, Yang W, Dai Y, Liu J, Chen ZY. Production of Food-Derived Bioactive Peptides with Potential Application in the Management of Diabetes and Obesity: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37027889 DOI: 10.1021/acs.jafc.2c08835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The prevalence of diabetes mellitus and obesity is increasing worldwide. Bioactive peptides are naturally present in foods or in food-derived proteins. Recent research has shown that these bioactive peptides have an array of possible health benefits in the management of diabetes and obesity. First, this review will summarize the top-down and bottom-up production methods of the bioactive peptides from different protein sources. Second, the digestibility, bioavailability, and metabolic fate of the bioactive peptides are discussed. Last, the present review will discuss and explore the mechanisms by which these bioactive peptides help against obesity and diabetes based on in vitro and in vivo studies. Although several clinical studies have demonstrated that bioactive peptides are beneficial in alleviating diabetes and obesity, more double-blind randomized controlled trials are needed in the future. This review has provided novel insights into the potential of food-derived bioactive peptides as functional foods or nutraceuticals to manage obesity and diabetes.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Wenjian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Yi Dai
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jianhui Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhen-Yu Chen
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
25
|
Ma J, Sun Y, Meng D, Zhou Z, Zhang Y, Yang R. Yeast proteins: The novel and sustainable alternative protein in food applications. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
26
|
Ghaffari-Bohlouli P, Simińska-Stanny J, Jafari H, Mirzaei M, Nie L, Delporte C, Shavandi A. Printable hyaluronic acid hydrogel functionalized with yeast-derived peptide for skin wound healing. Int J Biol Macromol 2023; 232:123348. [PMID: 36682658 DOI: 10.1016/j.ijbiomac.2023.123348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Targeted delivery of bioactive agents, growth factors, and drugs to skin wounds is a growing trend in biomaterials development for wound healing. This study presents a printable hyaluronic acid (HA) based hydrogel to deliver yeast-derived ACE-inhibitory peptide of VLSTSFPPW (VW-9) to the wound site. We first conjugated tyramine (Ty) on the carboxyl groups of the HA to form a phenol-functionalized HA (HA-Ty); then, the carboxylic acid groups of HA-Ty were aminated with ethylenediamine (HA-Ty-NH2). The primary amine groups of the HA-Ty-NH2 could then react with the carboxylic acids of the peptide. The hydrogel was then 3D printed and crosslinked with visible light. The modification of HA was confirmed by 1H NMR and FTIR. The swelling capacity of the conjugated hydrogels was 1.5-fold higher compared to the HA-Ty-NH2 hydrogel. The conjugated peptide did not affect on rheological properties and morphology of the hydrogels. The 3T3-L1 fibroblast cells seeded on the peptide-modified hydrogels exhibited higher viability than the hydrogels without the peptide, indicating that the peptide-enriched hydrogels may have the potential for wound healing applications.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Julia Simińska-Stanny
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Hafez Jafari
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium
| | - Mahta Mirzaei
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium; Centre for Food Chemistry and Technology, Ghent University Global Campus, Incheon, South Korea; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, geb. A, B-9000 Ghent, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Medical School, Université Libre de Bruxelles, Route de Lennik, 808, CP611, Brussels 1070, Belgium
| | - Amin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
27
|
Dou B, Wu X, Xia Z, Wu G, Guo Q, Lyu M, Wang S. Multiple Bioactivities of Peptides from Hydrolyzed Misgurnus anguillicaudatus. Molecules 2023; 28:molecules28062589. [PMID: 36985560 PMCID: PMC10053552 DOI: 10.3390/molecules28062589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Misgurnus anguillicaudatus (loach) is a widely distributed benthic fish in Asia. In this study, the alkaline protease was used to hydrolyze loach, and the hydrolysate products of different molecular weights were obtained by membrane separation. In vitro antioxidant assays showed that the <3 kDa fraction (SLH-1) exhibited the strongest antioxidant activity (DPPH, hydroxyl radical and superoxide radical scavenging ability, and reducing power), while SLH-1 was purified by gel filtration chromatography, and peptide sequences were identified by LC-MS/MS. A total of six peptides with antioxidant activity were identified, namely SERDPSNIKWGDAGAQ (D-1), TVDGPSGKLWR (D-2), NDHFVKL (D-3), AFRVPTP (D-4), DAGAGIAL (D-5), and VSVVDLTVR (D-6). In vitro angiotensin-converting enzyme (ACE) inhibition assay and pancreatic cholesterol esterase (CE) inhibition assay, peptide D-4 (IC50 95.07 μg/mL, 0.12 mM) and D-2 inhibited ACE, and peptide D-2 (IC50 3.19 mg/mL, 2.62 mM), D-3, and D-6 acted as pancreatic CE inhibitors. The inhibitory mechanisms of these peptides were investigated by molecular docking. The results showed that the peptides acted by binding to the key amino acids of the catalytic domain of enzymes. These results could provide the basis for the nutritional value and promote the type of healthy products from hydrolyzed loach.
Collapse
Affiliation(s)
- Baojie Dou
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xudong Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zihan Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guanghao Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Quanyou Guo
- East China Sea Fishery Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: (M.L.); (S.W.)
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Correspondence: (M.L.); (S.W.)
| |
Collapse
|
28
|
Mirzaei M, Dodi G, Gardikiotis I, Pasca SA, Mirdamadi S, Subra G, Echalier C, Puel C, Morent R, Ghobeira R, Soleymanzadeh N, Moser M, Goriely S, Shavandi A. 3D high-precision melt electro written polycaprolactone modified with yeast derived peptides for wound healing. BIOMATERIALS ADVANCES 2023; 149:213361. [PMID: 36965401 DOI: 10.1016/j.bioadv.2023.213361] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
In this study melt electro written (MEW) scaffolds of poly(ε-caprolactone) PCL are decorated with anti-inflammatory yeast-derived peptide for skin wound healing. Initially, 13 different yeast-derived peptides were screened and analyzed using both in vitro and in vivo assays. The MEW scaffolds are functionalized with the selected peptide VLSTSFPPW (VW-9) with the highest activity in reducing pro-inflammatory cytokines and stimulating fibroblast proliferation, migration, and collagen production. The peptide was conjugated to the MEW scaffolds using carbodiimide (CDI) and thiol chemistry, with and without plasma treatment, as well as by directly mixing the peptide with the polymer before printing. The MEW scaffolds modified using CDI and thiol chemistry with plasma treatment showed improved fibroblast and macrophage penetration and adhesion, as well as increased cell proliferation and superior anti-inflammatory properties, compared to the other groups. When applied to full-thickness excisional wounds in rats, the peptide-modified MEW scaffold significantly enhanced the healing process compared to controls (p < 0.05). This study provides proof of concept for using yeast-derived peptides to functionalize biomaterials for skin wound healing.
Collapse
Affiliation(s)
- Mahta Mirzaei
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Centre for Food Chemistry and Technology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, South Korea; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania; Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania
| | - Sorin-Aurelian Pasca
- Pathology Department, Faculty of Veterinary Medicine, Ion Ionescu de la Brad Iasi University of Life Sciences, Romania
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Gilles Subra
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Chloé Puel
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rino Morent
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rouba Ghobeira
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Architecture and Engineering, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Nazila Soleymanzadeh
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Muriel Moser
- ULB Center for Research in Immunology (U-CRI), Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Stanislas Goriely
- ULB Center for Research in Immunology (U-CRI), Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
29
|
Zhang L, Miao J, Guo J, Liu J, Xia Z, Chen B, Ma F, Cao Y. Two Novel Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Rice ( Oryza sativa L.) Bran Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4153-4162. [PMID: 36812450 DOI: 10.1021/acs.jafc.2c07270] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To realize the high-value utilization of rice byproducts, the rice bran protein hydrolysate was separated and purified by ultrafiltration and reversed-phase high-performance liquid chromatography (RP-HPLC), then the sequences of peptides were identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and their molecular docking analysis and activities in vitro and in the cell were carried out. Two novel peptides FDGSPVGY (840.3654 Da) and VFDGVLRPGQ (1086.582 Da) were obtained with IC50 values of 0.079 mg/mL (94.05 μM) and 0.093 mg/mL (85.59 μM) on angiotensin I-converting enzyme (ACE) inhibitory activity in vitro, respectively. Molecular docking results showed that two peptides interacted with ACE receptor protein through hydrogen bonding, hydrophobic interactions, etc. Through the EA.hy926 cells, it was found that FDGSPVGY and VFDGVLRPGQ could promote the release of nitric oxide (NO) and reduce the content of ET-1 to achieve the effect of antihypertension. In conclusion, the peptides from rice bran protein exhibited significant antihypertension activity and may be expected to realize the high-value utilization of rice byproducts.
Collapse
Affiliation(s)
- Lingyu Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Junbin Guo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhen Xia
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bingbing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Feng Ma
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
30
|
Tyagi A, Chelliah R, Banan-Mwine Daliri E, Sultan G, Madar IH, Kim NH, Shabbir U, Oh DH. Antioxidant activities of novel peptides from Limosilactobacillus reuteri fermented brown rice: A combined in vitro and in silico study. Food Chem 2023; 404:134747. [DOI: https:/doi.10.1016/j.foodchem.2022.134747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
31
|
Evaluation of antioxidant, α-amylase-inhibitory and antimicrobial activities of wheat gluten hydrolysates produced by ficin protease. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
32
|
Preparation and characterization of duck liver-derived antioxidant peptides based on LC-MS/MS, molecular docking, and machine learning. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Zhu Z, Guo H, Xu Y, Pius Bassey A, Ali A, Huang M, Huang J. ACE Inhibitory Peptides Derived from Muscovy Duck ( Cairina moschata) Plasma. Foods 2022; 12:50. [PMID: 36613266 PMCID: PMC9818667 DOI: 10.3390/foods12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
In this study, angiotensin-converting enzyme inhibitory peptides (ACE-IPs) derived from Muscovy duck (Cairina moschata) plasma hydrolysate (MDPH) were investigated. According to the general research protocol for bioactive peptides, the crude ACE-IPs of Muscovy duck plasma were separated and purified by ultrafiltration, gel chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC). Then the components with the highest ACE inhibition potential were selected for identification. Finally, the inhibition mechanism was explored by molecular docking and in silico simulated digestion. A total of 121 peptides was detected, and five were screened for synthesis verification and molecular docking. The peptide VALSSLRP revealed high ACE inhibitory activity (91.67 ± 0.73%) because this peptide bound tightly to the S1' pocket and formed 3 hydrogen bonds. Meaningfully, this work provides some new information about the generation of ACE-IPs derived from duck blood plasma.
Collapse
Affiliation(s)
- Zongshuai Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoyu Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Anthony Pius Bassey
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahtisham Ali
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jichao Huang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| |
Collapse
|
34
|
Cui Y, Ning M, Chen H, Zeng X, Yue Y, Yuan Y, Yue T. Microbial diversity associated with Tibetan kefir grains and its protective effects against ethanol-induced oxidative stress in HepG2 cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Renjuan L, Xiuli Z, Liping S, Yongliang Z. Identification, in silico screening, and molecular docking of novel ACE inhibitory peptides isolated from the edible symbiot Boletus griseus-Hypomyces chrysospermus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
Antioxidant activities of novel peptides from Limosilactobacillus reuteri fermented brown rice: A combined in vitro and in silico study. Food Chem 2022; 404:134747. [PMID: 36444095 DOI: 10.1016/j.foodchem.2022.134747] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022]
|
37
|
Cai J, Xing L, Zhang W, Fu L, Zhang J. Selection of Potential Probiotic Yeasts from Dry-Cured Xuanwei Ham and Identification of Yeast-Derived Antioxidant Peptides. Antioxidants (Basel) 2022; 11:antiox11101970. [PMID: 36290693 PMCID: PMC9598758 DOI: 10.3390/antiox11101970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/27/2022] Open
Abstract
The aim of this study was to select potential probiotic yeasts from dry-cured Xuanwei ham and investigate yeast-derived antioxidant peptides. The results showed that two strains (XHY69 and XHY79) were selected as potential probiotic yeasts and identified as Yamadazyma triangularis. The two yeasts showed tolerance under pH 2.5 and 1% bile salt, in addition to protease activity, auto-aggregation, antibacterial, and antioxidant activities. The peptide fraction (MW < 3 kDa) isolated from XHY69 fermentation broth, named XHY69AP, showed higher radical scavenging activities than glutathione at a concentration of 4.5 mg/mL (p < 0.05). The fraction (AP-D10) was purified from XHY69AP by gel filtration chromatography and reversed-phase high performance liquid chromatography, and then further identified by a UHPLC-LTQ-Orbitrap mass spectrometer. The molecular weight of all 55 purified sequences was distributed between 0.370 and 0.735 kDa. Among these seven novel peptides, Tyr-Pro-Leu-Pro (YPLP), Ala-Gly-Pro-Leu (AGPL), Gly-Pro-Phe-Pro (GPFP), and Ala-Pro-Gly-Gly-Phe (APGGF) were identified. All sequences were abundant in hydrophobic amino acids, especially proline residue. Among these novel peptides, YPLP possessed the highest ABTS scavenging rate (75.48%). The present work selects two new probiotic potential yeasts from dry-cured Xuanwei ham that are effective to yield novel antioxidant peptides.
Collapse
|
38
|
Purification and Identification of a Novel Angiotensin Converting Enzyme Inhibitory Peptide from the Enzymatic Hydrolysate of Lepidotrigla microptera. Foods 2022; 11:foods11131889. [PMID: 35804705 PMCID: PMC9265830 DOI: 10.3390/foods11131889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, Lepidotrigla microptera were hydrolyzed with four different proteolytic enzymes (Papain, neutrase, flavourzyme, and alcalase), and their distribution of molecular weights and ACE-inhibitory activity were tested. The alcalase hydrolysates showed the maximum ACE-inhibitory activity. A novel ACE-inhibitory peptide was isolated and purified from Lepidotrigla microptera protein hydrolysate (LMPH) using ultrafiltration, gel filtration chromatography, and preparative high performance liquid chromatography (prep-HPLC). The amino acid sequence of the purified peptide was identified as Phe-Leu-Thr-Ala-Gly-Leu-Leu-Asp (DLTAGLLE), and the IC50 value was 0.13 mg/mL. The ACE-inhibitory activity of DLTAGLLE was stable across a range of temperatures (<100 °C) and pH values (3.0−11.0) and retained after gastrointestinal digestion. DLTAGLLE was further identified as a noncompetitive inhibitor by Lineweaver−Burk plot. The molecular docking simulation showed that DLTAGLLE showed a high binding affinity with ACE sites by seven short hydrogen bonds. As the first reported antihypertensive peptide extracted from alcalase hydrolysate of Lepidotrigla microptera, DLTAGLLE has the potential to develop functional food or novel ACE-inhibitor drugs.
Collapse
|
39
|
Lim JY, Chai TT, Lam MQ, Ng WJ, Ee KY. In silico enzymatic hydrolysis of soy sauce cake glycinin G4 to reveal the bioactive peptides as potential food ingredients. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Exploration of ACE-Inhibiting Peptides Encrypted in Artemisia annua Using In Silico Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5367125. [PMID: 35655475 PMCID: PMC9152397 DOI: 10.1155/2022/5367125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022]
Abstract
The renin-angiotensin system (RAS) is involved in body fluid regulation, but one of its enzymes, angiotensin-converting enzyme (ACE), indirectly causes hypertension by constricting blood vessels. Autoimmune illness is linked to the increased risk of hypertension and cardiovascular disease. In this study, ACE-inhibiting peptides were studied from Artemisia annua proteins. In silico hydrolysis of proteins was performed by BIOPEP-UWM using proteolytic enzymes from plant, microbial, and digestive sources. The physicochemical properties of 1160 peptides were determined using the peptide package of R studio. Di- and tripeptides were mostly released with a molecular weight of 170 to 350 Da. PeptideRanker was used to select 16 peptides from a pool of 1160 peptides based on their likelihood of being bioactive. Molecular docking was performed by DS 2020 and AutoDock Vina, which revealed that the stability of the ligand-receptor complex is due to hydrogen bonding and electrostatic and hydrophobic interactions. Their binding energies ranged from -31.81 to -20.09 kJ/mol. For drug-likeness evaluation, an online tool SwissADME was used that follows the ADME rule (absorption, distribution, metabolism, and excretion) to check the pharmacokinetics and drug-likeness of the compound. In the future, the released peptides can be used to make functional nutraceutical foods against hypertension.
Collapse
|
41
|
O’Connor J, Garcia-Vaquero M, Meaney S, Tiwari BK. Bioactive Peptides from Algae: Traditional and Novel Generation Strategies, Structure-Function Relationships, and Bioinformatics as Predictive Tools for Bioactivity. Mar Drugs 2022; 20:md20050317. [PMID: 35621968 PMCID: PMC9145204 DOI: 10.3390/md20050317] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
Over the last decade, algae have been explored as alternative and sustainable protein sources for a balanced diet and more recently, as a potential source of algal-derived bioactive peptides with potential health benefits. This review will focus on the emerging processes for the generation and isolation of bioactive peptides or cryptides from algae, including: (1) pre-treatments of algae for the extraction of protein by physical and biochemical methods; and (2) methods for the generation of bioactive including enzymatic hydrolysis and other emerging methods. To date, the main biological properties of the peptides identified from algae, including anti-hypertensive, antioxidant and anti-proliferative/cytotoxic effects (for this review, anti-proliferative/cytotoxic will be referred to by the term anti-cancer), assayed in vitro and/or in vivo, will also be summarized emphasizing the structure–function relationship and mechanism of action of these peptides. Moreover, the use of in silico methods, such as quantitative structural activity relationships (QSAR) and molecular docking for the identification of specific peptides of bioactive interest from hydrolysates will be described in detail together with the main challenges and opportunities to exploit algae as a source of bioactive peptides.
Collapse
Affiliation(s)
- Jack O’Connor
- School of Biological & Health Sciences, Technological University Dublin, Dublin 2, Ireland; (J.O.); (S.M.)
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland;
| | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence: ; Tel.: +353-(01)-716-2513
| | - Steve Meaney
- School of Biological & Health Sciences, Technological University Dublin, Dublin 2, Ireland; (J.O.); (S.M.)
| | - Brijesh Kumar Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland;
| |
Collapse
|
42
|
Tawalbeh D, Ahmad WANW, Sarbon NM. Effect of ultrasound pretreatment on the functional and bioactive properties of legumes protein hydrolysates and peptides: A comprehensive review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2069258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- D. Tawalbeh
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - W. A. N. Wan Ahmad
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - N. M. Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
43
|
Wei G, Zhao Q, Wang D, Fan Y, Shi Y, Huang A. Novel ACE inhibitory, antioxidant and α-glucosidase inhibitory peptides identified from fermented rubing cheese through peptidomic and molecular docking. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113196] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Conventional and in silico approaches to select promising food-derived bioactive peptides: A review. Food Chem X 2022; 13:100183. [PMID: 35499000 PMCID: PMC9039911 DOI: 10.1016/j.fochx.2021.100183] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Seaweed and edible insects are considered new sources of bioactive peptides. Conventional approaches are necessary to validate the bioactivity of peptides. Bioinformatics tools accelerate the obtaining of bioactive peptides. The integrated approach is a promising strategy to obtain bioactive peptides.
The interest for food-derived bioactive peptides, either from common or unconventional sources, has increased due to their potential therapeutic effect against a wide range of diseases. The study of such bioactive peptides using conventional methods is a long journey, expensive and time-consuming. Hence, bioinformatic approaches, which can not only help to predict the formation of bioactive peptides from any known protein source, but also to analyze the protein structure/function relationship, have gained a new meaning in this scientific field. Therefore, this review aims to provides an overview of conventional characterization methods and the most recent advances in the field of in silico approaches for predicting and screening promising food-derived bioactive peptides.
Collapse
|
45
|
Oliveira AS, Ferreira C, Pereira JO, Pintado ME, Carvalho AP. Spent brewer's yeast (Saccharomyces cerevisiae) as a potential source of bioactive peptides: An overview. Int J Biol Macromol 2022; 208:1116-1126. [PMID: 35331792 DOI: 10.1016/j.ijbiomac.2022.03.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022]
Abstract
Bioactive peptides become popular in several economic sectors over the years as they have demonstrated important biological benefits in digestive, immune, cardiovascular, and nervous human systems. Although many commercial peptides are chemically synthesized, they can also be obtained from natural protein sources such as spent brewer's yeast (Saccharomyces cerevisiae). The recovery of this fermentation by-product for production of functional ingredients is an important step in the increasingly demand to implement and promote a circular economy-based industry. Bioactive peptides can be found in protein-rich extracts produced from S. cerevisiae, and several studies have described their positive impact of human body. In this line, the present review highlights and discuss the reported biological properties of S. cerevisiae bioactive peptides in terms of antihypertensive, antioxidant and antimicrobial effects, although other bioactivities are also described. Concerning the growing interest in yeast protein-rich products by agri-food and cosmetic sectors, some of the products currently on the market are also pointed out and their potential source is discussed.
Collapse
Affiliation(s)
- Ana Sofia Oliveira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carlos Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal.
| | - Joana Odila Pereira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; Amyris Bio Products Portugal Unipessoal Lda, Portugal.
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana P Carvalho
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
46
|
Sun J, Zhou C, Cao J, He J, Sun Y, Dang Y, Pan D, Xia Q. Purification and Characterization of Novel Antioxidative Peptides From Duck Liver Protein Hydrolysate as Well as Their Cytoprotection Against Oxidative Stress in HepG2 Cells. Front Nutr 2022; 9:848289. [PMID: 35369059 PMCID: PMC8965237 DOI: 10.3389/fnut.2022.848289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed at mining antioxidant peptides derived from duck liver as a strategy for valorizing poultry byproducts utilization via the isolation and characterization of peptide molecules with great antioxidant potential and cytoprotective effects against hydrogen peroxide-induced oxidative stress. Six novel peptides, including GEHGDSSVPVWSGVN, HLDYYLGK, HLTPWIGK, DTYIRQPW, WDDMEKIWHH, and MYPGIAD were isolated and purified by Sephadex G-15 and reverse-phase high-performance liquid chromatography, followed by the identification with liquid chromatography-tandem mass spectrometry. Among the hydrolysates from different enzymes, the alcalase-originated peptides presented the strongest antioxidant capacity as revealed by DPPH and ABTS assays. The synthesized peptides were used to validate the antioxidant activities, identifying that DTYIRQPW and WDDMEKIWHH were the major antioxidative peptides capable of protecting HepG2 cells from H2O2-induced oxidative damage via stimulating antioxidant enzymes such as superoxide dismutase and catalase to eliminate free radicals and to decrease lipid peroxidation products. Molecular docking suggested that the antioxidative properties of the isolated peptides were related to the site and number of hydrogen bonds. This investigation indicated the great potential of duck liver protein hydrolysates as a base material for producing and developing dietary bioactive peptides.
Collapse
Affiliation(s)
- Jin Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
47
|
Vidal-Limon A, Aguilar-Toalá JE, Liceaga AM. Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:934-943. [PMID: 34990125 DOI: 10.1021/acs.jafc.1c06110] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In silico tools, such as molecular docking, are widely applied to study interactions and binding affinity of biological activity of proteins and peptides. However, restricted sampling of both ligand and receptor conformations and use of approximated scoring functions can produce results that do not correlate with actual experimental binding affinities. Molecular dynamics simulations (MDS) can provide valuable information in deciphering functional mechanisms of proteins/peptides and other biomolecules, overcoming the rigid sampling limitations in docking analysis. This review will discuss the information related to the traditional use of in silico models, such as molecular docking, and its application for studying food proteins and bioactive peptides, followed by an in-depth introduction to the theory of MDS and description of why these molecular simulation techniques are important in the theoretical prediction of structural and functional dynamics of food proteins and bioactive peptides. Applications, limitations, and future prospects of MDS will also be discussed.
Collapse
Affiliation(s)
- Abraham Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico
| | - José E Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Avenida de las Garzas 10, Colonia El Panteón, Lerma de Villada, Estado de México 52005, Mexico
| | - Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory. Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
48
|
Antioxidant and ACE inhibitory activities of peptides prepared from adzuki bean by semi-solid enzymatic hydrolysis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Bioactivities of In Vitro Transepithelial Transported Peptides from Cooked Chicken Breast. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Qi Y, Tang X, Liu H, Lin Q, Lu Y, Luo H. Identification of Novel Nonapeptides from Sipunculus nudus L. and Comparing Its ACEI Activities Mechanism by Molecular Docking. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10328-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|