1
|
Kumar A, Bajaj P, Singh B, Paul K, Sharma P, Mehra S, Robin, Kaur P, Jasrotia S, Kumar P, Rajat, Singh V, Tuli HS. Sesamol as a potent anticancer compound: from chemistry to cellular interactions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4961-4979. [PMID: 38180556 DOI: 10.1007/s00210-023-02919-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Sesamol (SM), a well-known component isolated from sesame seeds (Sesamum indicum), used in traditional medicines in treating numerous ailments. However, numerous molecular investigations revealed the various mechanisms behind its activity, emphasizing its antiproliferative, anti-inflammatory, and apoptosis-inducing properties, preventing cancer cell spread to distant organs. In several cells derived from various malignant tissues, SM-regulated signal transduction pathways and cellular targets have been identified. This review paper comprehensively describes the anticancer properties of SM and SM-viable anticancer drugs. Additionally, the interactions of this natural substance with standard anticancer drugs are examined, and the benefits of using nanotechnology in SM applications are explored. This makes SM a prime example of how ethnopharmacological knowledge can be applied to the development of contemporary drugs.
Collapse
Affiliation(s)
- Ajay Kumar
- University Center for Research & Development (UCRD), Biotechnology Engineering & Food Technology, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India.
| | - Payal Bajaj
- Advanced Eye Center, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Brahmjot Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Kapil Paul
- Kanya Maha Vidyalaya, Jalandhar, 144004, Punjab, India
| | - Pooja Sharma
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Sukanya Mehra
- P.G. Department of Science, Khalsa College For Women, Amritsar, 143001, Punjab, India
| | - Robin
- Regional Water Testing Laboratory, Department of Water Supply and Sanitation, Agilent Technologies India Pvt. Ltd., Amritsar, Punjab, India
| | - Pardeep Kaur
- Post Graduate Department of Botany, Khalsa College, Amritsar, Punjab, India
| | - Shivam Jasrotia
- Department of Biosciences, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Parveen Kumar
- Department of Chemistry, Chandigarh University, Gharuan, Mohali, 140413, Punjab, India
| | - Rajat
- Punjab Biotechnology Incubator (PBTI), Phase VIII, Mohali, 160071, India
| | - Vipourpreet Singh
- Coast Mountain College, Prince Rupert, British Columbia, V8J3S8, Canada
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| |
Collapse
|
2
|
Jakobek L, Blesso C. Beneficial effects of phenolic compounds: native phenolic compounds vs metabolites and catabolites. Crit Rev Food Sci Nutr 2023; 64:9113-9131. [PMID: 37140183 DOI: 10.1080/10408398.2023.2208218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In the human body, the positive effects of phenolic compounds are increasingly observed through their presence in tissues and organs in their native form or in the form of metabolites or catabolites formed during digestion, microbial metabolism, and host biotransformation. The full extent of these effects is still unclear. The aim of this paper is to review the current knowledge of beneficial effects of native phenolic compounds or their metabolites and catabolites focusing on their role in the health of the digestive system, including disorders of the gastrointestinal and urinary tracts and liver. Studies are mostly connecting beneficial effects in the gastrointestinal and urinary tract to the whole food rich in phenolics, or to the amount of phenolic compounds/antioxidants in food. Indeed, the bioactivity of parent phenolic compounds should not be ignored due to their presence in the digestive tract, and the impact on the gut microbiota. However, the influence of their metabolites and catabolites might be more important for the liver and urinary tract. Distinguishing between the effects of parent phenolics vs metabolites and catabolites at the site of action are important for novel areas of food industry, nutrition and medicine.
Collapse
Affiliation(s)
- Lidija Jakobek
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
- Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - Christopher Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
3
|
Nair AB, Dalal P, Kadian V, Kumar S, Garg M, Rao R, Almuqbil RM, Alnaim AS, Aldhubiab B, Alqattan F. Formulation Strategies for Enhancing Pharmaceutical and Nutraceutical Potential of Sesamol: A Natural Phenolic Bioactive. PLANTS (BASEL, SWITZERLAND) 2023; 12:1168. [PMID: 36904028 PMCID: PMC10005287 DOI: 10.3390/plants12051168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Natural plants and their products continue to be the major source of phytoconstituents in food and therapeutics. Scientific studies have evidenced the benefits of sesame oil and its bioactives in various health conditions. Various bioactives present in it include sesamin, sasamolin, sesaminol, and sesamol; among these, sesamol represents a major constituent. This bioactive is responsible for preventing various diseases including cancer, hepatic disorders, cardiac ailments, and neurological diseases. In the last decade, the application of sesamol in the management of various disorders has attracted the increasing interest of the research community. Owing to its prominent pharmacological activities, such as antioxidant, antiinflammatory, antineoplastic, and antimicrobial, sesamol has been explored for the above-mentioned disorders. However, despite the above-mentioned therapeutic potential, its clinical utility is mainly hindered owing to low solubility, stability, bioavailability, and rapid clearance issues. In this regard, numerous strategies have been explored to surpass these restrictions with the formulation of novel carrier platforms. This review aims to describe the various reports and summarize the different pharmacological activities of sesamol. Furthermore, one part of this review is devoted to formulating strategies to improve sesamol's challenges. To resolve the issues such as the stability, low bioavailability, and high systemic clearance of sesamol, novel carrier systems have been developed to open a new avenue to utilize this bioactive as an efficient first-line treatment for various diseases.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Pooja Dalal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
- Atam Institute of Pharmacy, Om Sterling Global University, Hisar 125001, India
| | - Minakshi Garg
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatemah Alqattan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
4
|
Sharma T, Airao V, Buch P, Vaishnav D, Parmar S. Sesamol protects hippocampal CA1 neurons and reduces neuronal infarction in global model of cerebral ischemia in rats. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Bosebabu B, Cheruku SP, Chamallamudi MR, Nampoothiri M, Shenoy RR, Nandakumar K, Parihar VK, Kumar N. An Appraisal of Current Pharmacological Perspectives of Sesamol: A Review. Mini Rev Med Chem 2020; 20:988-1000. [DOI: 10.2174/1389557520666200313120419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
Sesame (Sesamum indicum L.) seeds have been authenticated for its medicinal value in both
Chinese and Indian systems of medicine. Its numerous potential nutritional benefits are attributed to its
main bioactive constituents, sesamol. As a result of those studies, several molecular mechanisms are
emerging describing the pleiotropic biological effects of sesamol. This review summarized the most
interesting in vitro and in vivo studies on the biological effects of sesamol. The present work summarises
data available from Pubmed and Scopus database. Several molecular mechanisms have been elucidated
describing the pleiotropic biological effects of sesamol. Its major therapeutic effects have been
elicited in managing oxidative and inflammatory conditions, metabolic syndrome and mood disorders.
Further, compelling evidence reflected the ability of sesamol in inhibiting proliferation of the inflammatory
cell, prevention of invasion and angiogenesis via affecting multiple molecular targets and
downstream mechanisms. Sesamol is a safe, non‐toxic chemical that mediates anti‐inflammatory
effects by down‐regulating the transcription of inflammatory markers such as cytokines, redox status,
protein kinases, and enzymes that promote inflammation. In addition, sesamol also induces apoptosis
in cancer cells via mitochondrial and receptor‐mediated pathways, as well as activation of caspase cascades.
In the present review, several pharmacological effects of sesamol are summarised namely, antioxidant,
anti-cancer, neuroprotective, cardioprotective, anti-inflammatory, hypolipidemic, radioprotective,
anti-aging, anti-ulcer, anti-dementia, anti-depressant, antiplatelet, anticonvulsant, anti-anxiolytic,
wound healing, cosmetic (skin whitening), anti-microbial, matrix metalloproteinase (MMPs) inhibition,
hepatoprotective activity and other biological effects. Here we have summarized the proposed
mechanism behind these pharmacological effects.
Collapse
Affiliation(s)
- Bellamkonda Bosebabu
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Sri Pragnya Cheruku
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Rekha R. Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| | - Vipan K. Parihar
- Department of Radiation Oncology, University of California, Irvine, CA 92697- 2695, United States
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal-576104, Karnataka, India
| |
Collapse
|
6
|
Anti-Inflammatory and Anticancer Properties of Bioactive Compounds from Sesamum indicum L.-A Review. Molecules 2019; 24:molecules24244426. [PMID: 31817084 PMCID: PMC6943436 DOI: 10.3390/molecules24244426] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
The use of foodstuff as natural medicines has already been established through studies demonstrating the pharmacological activities that they exhibit. Knowing the nutritional and pharmacological significance of foods enables the understanding of their role against several diseases. Among the foods that can potentially be considered as medicine, is sesame or Sesamum indicum L., which is part of the Pedaliaceae family and is composed of its lignans such as sesamin, sesamol, sesaminol and sesamolin. Its lignans have been widely studied and are known to possess antiaging, anticancer, antidiabetes, anti-inflammatory and antioxidant properties. Modern chronic diseases, which can transform into clinical diseases, are potential targets of these lignans. The prime example of chronic diseases is rheumatic inflammatory diseases, which affect the support structures and the organs of the body and can also develop into malignancies. In line with this, studies emphasizing the anti-inflammatory and anticancer activities of sesame have been discussed in this review.
Collapse
|
7
|
Afroz M, Zihad SMNK, Uddin SJ, Rouf R, Rahman MS, Islam MT, Khan IN, Ali ES, Aziz S, Shilpi JA, Nahar L, Sarker SD. A systematic review on antioxidant and antiinflammatory activity of Sesame (
Sesamum indicum
L.) oil and further confirmation of antiinflammatory activity by chemical profiling and molecular docking. Phytother Res 2019; 33:2585-2608. [DOI: 10.1002/ptr.6428] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/10/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Mohasana Afroz
- Pharmacy Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | | | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Faculty of Life ScienceBangabandhu Sheikh Mujibur Rahman Science & Technology University Gopalganj Bangladesh
| | - Md. Shamim Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | - Muhammad Torequl Islam
- Department for Management of Science and Technology DevelopmentTon Duc Thang University Ho Chi Minh City Vietnam
- Faculty of PharmacyTon Duc Thang University Ho Chi Minh City Vietnam
| | - Ishaq N. Khan
- PK‐NeuroOncology Research Group, Institute of Basic Medical SciencesKhyber Medical University Peshawar Pakistan
| | - Eunüs S. Ali
- Department of Biochemistry and Molecular GeneticsNorthwestern University Feinberg School of Medicine Chicago Illinois
| | - Shahin Aziz
- Chemical Research DivisionBangladesh Council of Scientific and Industrial Research Dhaka Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science SchoolKhulna University Khulna Bangladesh
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of ScienceLiverpool John Moores University Liverpool UK
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Faculty of ScienceLiverpool John Moores University Liverpool UK
| |
Collapse
|
8
|
Panzella L, Eidenberger T, Napolitano A. Anti-Amyloid Aggregation Activity of Black Sesame Pigment: Toward a Novel Alzheimer's Disease Preventive Agent. Molecules 2018; 23:E676. [PMID: 29547584 PMCID: PMC6017763 DOI: 10.3390/molecules23030676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 12/18/2022] Open
Abstract
Black sesame pigment (BSP) represents a low cost, easily accessible material of plant origin exhibiting marked antioxidant and heavy metal-binding properties with potential as a food supplement. We report herein the inhibitory properties of the potentially bioaccessible fraction of BSP following simulated gastrointestinal digestion against key enzymes involved in Alzheimer's disease (AD). HPLC analysis indicated that BSP is transformed under the pH conditions mimicking the intestinal environment and the most abundant of the released compounds was identified as vanillic acid. More than 80% inhibition of acetylcholinesterase-induced aggregation of the β-amyloid Aβ1-40 was observed in the presence of the potentially bioaccessible fraction of BSP, which also efficiently inhibited self-induced Aβ1-42 aggregation and β-secretase (BACE-1) activity, even at high dilution. These properties open new perspectives toward the use of BSP as an ingredient of functional food or as a food supplement for the prevention of AD.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| | - Thomas Eidenberger
- School of Engineering and Environmental Sciences, Upper Austria University of Applied Sciences, Stelzhamerstraße 23, 4600 Wels, Austria.
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia 4, I-80126 Naples, Italy.
| |
Collapse
|
9
|
Guitard R, Nardello-Rataj V, Aubry JM. Theoretical and Kinetic Tools for Selecting Effective Antioxidants: Application to the Protection of Omega-3 Oils with Natural and Synthetic Phenols. Int J Mol Sci 2016; 17:E1220. [PMID: 27483242 PMCID: PMC5000618 DOI: 10.3390/ijms17081220] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/08/2016] [Accepted: 07/21/2016] [Indexed: 01/16/2023] Open
Abstract
Radical-scavenging antioxidants play crucial roles in the protection of unsaturated oils against autoxidation and, especially, edible oils rich in omega-3 because of their high sensitivity to oxygen. Two complementary tools are employed to select, among a large set of natural and synthetic phenols, the most promising antioxidants. On the one hand, density functional theory (DFT) calculations provide bond dissociation enthalpies (BDEs) of 70 natural (i.e., tocopherols, hydroxybenzoic and cinnamic acids, flavonoids, stilbenes, lignans, and coumarins) and synthetic (i.e., 2,6-di-tert-butyl-4-methylphenol (BHT), 3-tert-butyl-4-hydroxyanisol (BHA), and tert-butylhydroquinone (TBHQ)) phenols. These BDEs are discussed on the basis of structure-activity relationships with regard to their potential antioxidant activities. On the other hand, the kinetic rate constants and number of hydrogen atoms released per phenol molecule are measured by monitoring the reaction of phenols with 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) radical. The comparison of the results obtained with these two complementary methods allows highlighting the most promising antioxidants. Finally, the antioxidant effectiveness of the best candidates is assessed by following the absorption of oxygen by methyl esters of linseed oil containing 0.5 mmol L(-1) of antioxidant and warmed at 90 °C under oxygen atmosphere. Under these conditions, some natural phenols namely epigallocatechin gallate, myricetin, rosmarinic and carnosic acids were found to be more effective antioxidants than α-tocopherol.
Collapse
Affiliation(s)
- Romain Guitard
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Véronique Nardello-Rataj
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| | - Jean-Marie Aubry
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France.
| |
Collapse
|
10
|
Durak A, Gawlik-Dziki U, Sugier D. Coffee enriched with willow (Salix purpurea and Salix myrsinifolia) bark preparation – Interactions of antioxidative phytochemicals in a model system. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
11
|
Wan Y, Li H, Fu G, Chen X, Chen F, Xie M. The relationship of antioxidant components and antioxidant activity of sesame seed oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2571-8. [PMID: 25472416 DOI: 10.1002/jsfa.7035] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/16/2014] [Accepted: 12/02/2014] [Indexed: 05/27/2023]
Abstract
Although sesame seed oil contains high levels of unsaturated fatty acids and even a small amount of free fatty acids in its unrefined flavored form, it shows markedly greater stability than other dietary vegetable oils. The good stability of sesame seed oil against autoxidation has been ascribed not only to its inherent lignans and tocopherols but also to browning reaction products generated when sesame seeds are roasted. Also, there is a strong synergistic effect among these components. The lignans in sesame seed oil can be categorized into two types, i.e. inherent lignans (sesamin, sesamolin) and lignans mainly formed during the oil production process (sesamol, sesamolinol, etc.). The most abundant tocopherol in sesame seed oil is γ-tocopherol. This article reviews the antioxidant activities of lignans and tocopherols as well as the browning reaction and its products in sesame seed and/or its oil. It is concluded that the composition and structure of browning reaction products and their impacts on sesame ingredients need to be further studied to better explain the remaining mysteries of sesame oil.
Collapse
Affiliation(s)
- Yin Wan
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Huixiao Li
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Xueyang Chen
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Feng Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Department of Food Science and Engineering, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
12
|
Kim SJ, Kim JM, Shim SH, Chang HI. Anthocyanins accelerate the healing of naproxen-induced gastric ulcer in rats by activating antioxidant enzymes via modulation of Nrf2. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
13
|
Antioxidant, lipid lowering, and membrane stabilization effect of sesamol against doxorubicin-induced cardiomyopathy in experimental rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:934239. [PMID: 24228260 PMCID: PMC3818820 DOI: 10.1155/2013/934239] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 01/03/2023]
Abstract
The present study was designed to evaluate the cardioprotective effect of sesamol against doxorubicin-induced cardiomyopathy in rats. In this study, the cardioprotective effect of sesamol against doxorubicin induced cardiomyopathy in experimental rats was evaluated at the dosage of 50 mg/kg bw. Doxorubicin was administered to rats at a total cumulative dose of 15 mg/kg through intraperitoneal route for 2 weeks in six-divided dose on 8th, 10th, 14th, 16th, 18th, and 21st day. After the last dose administration, the endogenous antioxidants and lipid peroxidation were estimated in heart tissue homogenate. Cardiac biomarkers such as troponin T, LDH, CK, and AST and lipid profiles such as cholesterol, triglycerides, HDL, LDL, and VLDL were estimated in serum. Sesamol has cardioprotective activity through normalization of doxorubicin-induced-altered biochemical parameters. Biochemical study was further supported by histopathological study, which shows that sesamol offered myocardial protection from necrotic damage. From these findings, it has been concluded that the sesamol has significant cardioprotection against doxorubicin induced cardiomyopathy via amelioration of oxidative stress, lipid lowering, and membrane stabilization effect.
Collapse
|
14
|
Chandrasekaran VRM, Hsu DZ, Liu MY. Beneficial effect of sesame oil on heavy metal toxicity. JPEN J Parenter Enteral Nutr 2013; 38:179-85. [PMID: 23744838 DOI: 10.1177/0148607113490960] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heavy metals become toxic when they are not metabolized by the body and accumulate in the soft tissue. Chelation therapy is mainly for the management of heavy metal-induced toxicity; however, it usually causes adverse effects or completely blocks the vital function of the particular metal chelated. Much attention has been paid to the development of chelating agents from natural sources to counteract lead- and iron-induced hepatic and renal damage. Sesame oil (a natural edible oil) and sesamol (an active antioxidant) are potently beneficial for treating lead- and iron-induced hepatic and renal toxicity and have no adverse effects. Sesame oil and sesamol significantly inhibit iron-induced lipid peroxidation by inhibiting the xanthine oxidase, nitric oxide, superoxide anion, and hydroxyl radical generation. In addition, sesame oil is a potent inhibitor of proinflammatory mediators, and it attenuates lead-induced hepatic damage by inhibiting nitric oxide, tumor necrosis factor-α, and interleukin-1β levels. Because metal chelating therapy is associated with adverse effects, treating heavy metal toxicity in addition with sesame oil and sesamol may be better alternatives. This review deals with the possible use and beneficial effects of sesame oil and sesamol during heavy metal toxicity treatment.
Collapse
|
15
|
El-Shinnawy NA, Abd-Elmageid SA, Alshailabi EMA. Evaluation of antiulcer activity of indole-3-carbinol and/or omeprazole on aspirin-induced gastric ulcer in rats. Toxicol Ind Health 2012; 30:357-75. [DOI: 10.1177/0748233712457448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present work is an attempt to elucidate the antiulcer activity of indole-3-carbinol (I3C), which is one of the anticarcinogenic phytochemicals found in the vegetables of Cruciferae family such as broccoli and cauliflower, alone or in combination with omeprazole (OMP), a proton pump inhibitor, to diminish the effects of induced acute gastric ulcer by aspirin (ASA) in male albino rats. A total of 48 adult male albino rats were used in the present study. Animals were divided into eight experimental groups (six animals each group). They were given different experimental inductions of ASA at a dose of 500 mg/kg/body weight, OMP at a dose of 20 mg/kg/body weight and I3C at a dose of 20 mg/kg/body weight either alone or in combination with each other orally for a duration of 7 days. Inner stomach features, ulcer index, pH activity, body weight, stomach weight, hematological investigations, serum total protein albumin and reduced glutathione activity were investigated in addition to the histological, histochemical and immunohistochemical stain of cyclooxygenase-2 to the stomach tissue of normal control, ulcerated and treated ulcerated rats. The results of this study revealed that oral administration of ASA to rats produced the expected characteristic mucosal lesions. OMP accelerated ulcer healing but the administration of I3C either alone or in combination with OMP to ASA-ulcerated rats produced a profound protection to the gastric mucosa from injury induced by ASA. Our results suggested that administration of antiulcer natural substances such as I3C in combination with the perused treatment such as OMP is a very important initiative in the development of new strategies in ulcer healing.
Collapse
Affiliation(s)
- Nashwa A El-Shinnawy
- Department of Zoology, Women’s College for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Samira A Abd-Elmageid
- Department of Zoology, Women’s College for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|