1
|
Kulkarni P, Yeram PB, Vora A. Terpenes in the management of chronic kidney disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6351-6368. [PMID: 38683370 DOI: 10.1007/s00210-024-03098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
Chronic kidney disease (CKD) is a chronic and progressive systemic condition that characterizes irreversible alterations in the kidneys' function and structure over an extended period, spanning months to years. CKD is the one of the major causes of mortality worldwide. However, very limited treatment options are available in the market for management of the CKD. Diabetes and hypertension are the key risk factors for the progression of CKD. It is majorly characterised by glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Plants are considered safe and effective in treating various chronic conditions. A diverse group of phytoconstituents, including polyphenols, flavonoids, alkaloids, tannins, saponins, and terpenes, have found significant benefits in managing chronic ailments. Terpenes constitute a diverse group of plant compounds with various therapeutic benefits. Evidence-based pharmacological studies underscore the crucial role played by terpenes in preventing and managing CKD. These substances demonstrate the capacity to hinder detrimental pathways, such as oxidative stress, inflammation and fibrosis, thereby demonstrating benefit in renal dysfunction. This review offers a comprehensive overview of the roles and positive attributes of commonly occurring terpenes in managing the causes and risk factors of CKD and the associated conditions.
Collapse
Affiliation(s)
- Piyusha Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Pranali B Yeram
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Shri Vile Parle Kelavani Mandal's Narsee Monjee Institute of Management Studies, Mumbai, 400056, India.
| |
Collapse
|
2
|
Liao J, Zhang Y, Deng Z, Li H, Zhang B. Characterization of the covalent binding of cyanidin-3-glucoside to bovine serum albumin and its inhibition mechanism for advanced nonenzymatic glycosylation reactions. J Food Sci 2024; 89:4899-4913. [PMID: 38980988 DOI: 10.1111/1750-3841.17227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Nonenzymatic glycosylation of proteins can generate advanced glycosylation end products, which are closely associated with the pathogenesis of certain chronic physiological diseases and aging. In this study, we characterized the covalent binding of cyanidin-3-glucoside (C3G) to bovine serum albumin (BSA) and investigated the mechanism by which this covalent binding inhibits the nonenzymatic glycosylation of BSA. The results indicated that the covalent interaction between C3G and BSA stabilized the protein's secondary structure. Through liquid chromatography-electrospray ionization tandem mass spectrometry analysis, we identified the covalent binding sites of C3G on BSA as lysine, arginine, asparagine, glutamine, and cysteine residues. This covalent interaction significantly suppressed the nonenzymatic glycosylation of BSA, consequently reducing the formation of nonenzymatic glycosylation products. C3G competitively binds to nonenzymatic glycosylation sites (e.g., lysine and arginine) on BSA, thereby impeding the glycosylation process and preventing the misfolding and structural alterations of BSA induced by fructose. Furthermore, the covalent attachment of C3G to BSA preserves the secondary structure of BSA and hinders subsequent nonenzymatic glycosylation events.
Collapse
Affiliation(s)
- Jinqiang Liao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Yujing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Hongyan Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- International Institute of Food Innovation, Nanchang University, Nanchang, China
| | - Bing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- International Institute of Food Innovation, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Brahma S, Goyal AK, Dhamodhar P, Kumari MR, Jayashree S, Usha T, Middha SK. Can Polyherbal Medicine be used for the Treatment of Diabetes? - A Review of Historical Classics, Research Evidence and Current Prevention Programs. Curr Diabetes Rev 2024; 20:e140323214600. [PMID: 36918778 DOI: 10.2174/1573399819666230314093721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 03/16/2023]
Abstract
Diabetes mellitus (DM), a chronic medical condition, has attained a global pandemic status over the last few decades affecting millions of people. Despite a variety of synthetic drugs available in the market, the use of herbal medicines for managing diabetes is gaining importance because of being comparatively safer. This article reviews the result of a substantial literature search on polyherbal formulations (PHFs) developed and evaluated with potential for DM. The accumulated data in the literature allowed us to enlist 76PHFs consisting of different parts of 147 plant species belonging to 58 botanical families. The documented plant species are laden with bioactive components with anti-diabetic properties and thus draw attention. The most favoured ingredient for PHFs was leaves of Gymnema sylvestre and seeds of Trigonella foenum-graecum used in 27 and 22 formulations, respectively. Apart from herbs, shilajit (exudates from high mountain rocks) formed an important component of 9 PHFs, whereas calcined Mytilus margaritiferus and goat pancreas were used in Dolabi, the most commonly used tablet form of PHF in Indian markets. The healing properties of PHFs against diabetes have been examined in both pre-clinical studies and clinical trials. However, the mechanism(s) of action of PHFs are still unclear and considered the pitfalls inherent in understanding the benefits of PHFs. From the information available based on experimental systems, it could be concluded that plant-derived medicines will have a considerable role to play in the control of diabetes provided the challenges related to their bioavailability, bioefficacy, optimal dose, lack of characterization, ambiguous mechanism of action, and clinical efficiency are addressed.
Collapse
Affiliation(s)
- Sudem Brahma
- Department of Biotechnology, Bodoland University, Kokrajhar-783370, BTR, Assam, India
| | - Arvind Kumar Goyal
- Department of Biotechnology, Bodoland University, Kokrajhar-783370, BTR, Assam, India
| | - Prakash Dhamodhar
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bangaluru-560054, Karnataka, India
| | - Mani Reema Kumari
- Department of Botany, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| | - S Jayashree
- School of Allied Health Sciences, REVA University, Bengaluru-560064, Karnataka, India
| | - Talambedu Usha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| | - Sushil Kumar Middha
- Department of Biochemistry, Maharani Lakshmi Ammanni College for Women, Bengaluru-560012, Karnataka, India
| |
Collapse
|
4
|
Sousa LDR, Viana NR, Coêlho AG, Barbosa CDO, Barros DSL, Martins MDCDCE, Ramos RM, Arcanjo DDR. Use of Monoterpenes as Potential Therapeutics in Diabetes Mellitus: A Prospective Review. Adv Pharmacol Pharm Sci 2023; 2023:1512974. [PMID: 38029230 PMCID: PMC10665111 DOI: 10.1155/2023/1512974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/06/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Monoterpenes are secondary metabolites of plants belonging to the terpenoid class of natural products. They are the most abundant components of essential oils that are generally considered to have various pharmacological properties. These compounds are reported to have antidiabetic effects in recent years. Due to nature's complex biosynthetic machinery, they also exhibit a reasonable degree of structural complexity/diversity for further analysis in structure-activity studies. Therefore, monoterpenes as antidiabetic agents have been investigated by recent in vitro and in vivo studies extensively reported in the scientific literature and claimed by patent documents. The purpose of this survey is to provide a comprehensive and prospective review concerning the potential applications of monoterpenes in the treatment of diabetes. The data for this research were collected through the specialized databases PubMed, Scopus, Web of Science, and ScienceDirect between the years 2014 and 2022, as well as the patent databases EPO, WIPO, and USPTO. The research used 76 articles published in the leading journals in the field. The main effect observed was the antidiabetic activity of monoterpenes. This review showed that monoterpenes can be considered promising agents for prevention and/or treatment of diabetes as well as have a marked pharmaceutical potential for the development of bioproducts for therapeutics applications.
Collapse
Affiliation(s)
- Leonardo da Rocha Sousa
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
- LaBME–Laboratory of Molecular Biology and Epidemiology, Federal Institute of Education, Science and Technology of Piauí–Campus Teresina Central, Teresina, Brazil
| | - Nildomar Ribeiro Viana
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| | - Angélica Gomes Coêlho
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| | - Celma de Oliveira Barbosa
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| | | | - Maria do Carmo de Carvalho e Martins
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| | - Ricardo Martins Ramos
- LaBME–Laboratory of Molecular Biology and Epidemiology, Federal Institute of Education, Science and Technology of Piauí–Campus Teresina Central, Teresina, Brazil
- LaPeSI–Information Systems Research Laboratory, Department of Information, Environment, Health and Food Production, Federal Institute of Piaui, Teresina, Brazil
| | - Daniel Dias Rufino Arcanjo
- LAFMOL–Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina, Brazil
| |
Collapse
|
5
|
Computational docking investigation of phytocompounds from bergamot essential oil against Serratia marcescens protease and FabI: Alternative pharmacological strategy. Comput Biol Chem 2023; 104:107829. [PMID: 36842391 DOI: 10.1016/j.compbiolchem.2023.107829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The rapid development of multi-drug resistant (MDR) pathogens adds urgency to search for novel and safe drugs having promising action on new and re-emerging infectious pathogens. Serratia marcescens is an MDR pathogen that causes several-healthcare associated infections. Curbing bacterial virulence, rather than inhibiting its growth, is a promising strategy to diminish the pathogenesis of infectious bacteria, reduce the development of antimicrobial resistance, and boost the host immune power to eradicate infections. Bergamot essential oil (BEO) is a remarkable source of promising therapeutics against pathogens. Therefore, the present investigation aimed to analyze the major phytocompounds from BEO against S. marcescens virulent proteins using in silico studies. The analysis of BEO phytocompounds was achieved by Gas chromatography-mass spectrometry (GC-MS) method. The molecular docking was carried out using the SP and XP docking protocol of the Glide program. The drug-likeness and pharmacokinetics properties (ADMET properties) were analyzed with SwissADME and pkCSM server. The results revealed that the major compounds present in BEO are Linalool (8.17%), D-Limonene (21.26%), and Linalyl acetate (26.91%). Molecular docking analysis revealed that these compounds docked strongly within the binding cavities of Serratia protease and FabI model which in turn curb the pathogenesis of this bacteria. Linalool interacted with the Serratia protease and FabI with a binding energy of - 3.130 kcal/mol and - 3.939 kcal/mol, respectively. Based on the pharmacokinetics findings all lead BEO phytocompounds appear to be promising drug candidates. Overall, these results represent a significant step in the development of plant-based compounds as a promising inhibitor of the virulent proteins of the MDR S. marcescens.
Collapse
|
6
|
Wen P, Zhang L, Kang Y, Xia C, Jiang J, Xu H, Cui G, Wang J. Effect of Baking Temperature and Time on Advanced Glycation End Products and Polycyclic Aromatic Hydrocarbons in Beef. J Food Prot 2022; 85:1726-1736. [PMID: 36040219 DOI: 10.4315/jfp-22-139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Beef is an important red meat that contains essential nutrients for human growth and development. Baking is a popular beef cooking method. Temperature and time play key roles in the final quality of beef. How temperature and time affect the changes of nutrients and the formation of harmful products in beef is not clear. The purpose of this study was to measure the content of water, fat, protein, ash, nitrite, total volatile base nitrogen, advanced glycation end products (AGEs) and their precursors, and polycyclic aromatic hydrocarbons (PAHs) at different temperatures (150, 190, 230, 270, and 310°C) for 20 min and at 190°C for different times (10, 20, and 30 min), so as to discuss the effect of different temperatures and times on beef nutrients and harmful products. The results showed that the moisture content of beef decreased with increased baking temperature and time, resulting in the increase of the relative content of fat, protein, and ash. The content of total volatile base nitrogen increased continuously. Compared with the control group, the content of glyoxal in beef decreased, whereas the content of methylglyoxal, pentosidine, and fluorescent AGEs increased, indicating the continuous accumulation of AGEs in beef. A total of 13 PAHs were identified by gas chromatography-mass spectrometry. The concentrations of 13 PAHs in beef increased with increases in baking temperature and time. The concentrations of BkP and BaP, which are the most carcinogenic to humans, were 0.36 and 0.35 μg/kg in raw meat, respectively; these were increased by high temperature and long baking times. After beef was baked at 270 and 310°C for 20 min, the concentration of BkP increased to 9.49 and 5.66 μg/kg, respectively, and the concentration of BaP increased to 5.45 and 4.42 μg/kg, respectively. After baking at 190°C for 30 and 40 min, the concentration of BkP increased to 4.81 and 24.20 μg/kg, respectively, and the concentration of BaP increased to 3.85 and 17.79 μg/kg, respectively. HIGHLIGHTS
Collapse
Affiliation(s)
- Pingping Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| | - Lan Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| | - Yuwei Kang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China.,College of Culinary Science and Technology, Jiangsu Tourism Vocational College, Yangzhou 225127, People's Republic of China
| | - Chao Xia
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| | - Jingjing Jiang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| | - Huiqing Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| | - Guiyou Cui
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| | - Jun Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, People's Republic of China
| |
Collapse
|
7
|
Zhao M, Li Y, Bai X, Feng J, Xia X, Li F. Inhibitory Effect of Guava Leaf Polyphenols on Advanced Glycation End Products of Frozen Chicken Meatballs (-18 °C) and Its Mechanism Analysis. Foods 2022; 11:foods11162509. [PMID: 36010509 PMCID: PMC9407430 DOI: 10.3390/foods11162509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
The inhibitory effect of guava leaf polyphenols (GLP) on advanced glycation end products (AGEs) of frozen chicken meatballs (−18 °C) and its possible inhibitory mechanism was investigated. Compared with control samples after freezing for 6 months, acidic value (AV), lipid peroxides, thiobarbituric acid reactive substance (TBARS), A294, A420, glyoxal (GO), Nε-carboxymethyl-lysine (CML), pentosidine, and fluorescent AGEs of chicken meatballs with GLP decreased by 11.1%, 22.3%, 19.5%, 4.30%, 8.66%, 8.27%, 4.80%, 20.5%, and 7.68%, respectively; while free sulfhydryl groups the content increased by 4.90%. Meanwhile, there was no significant difference between meatballs with GLP and TP in AV, A294, GO, and CML (p > 0.05). Correlation analysis indicated that GO, CML, pentosidine, and fluorescent AGEs positively correlated with AV, TBARS, A294, and A420, while GO, CML, pentosidine, and fluorescent AGEs negatively correlated with free sulfhydryl groups. These results manifested GLP could inhibit AGEs formation by inhibiting lipid oxidation, protein oxidation, and Maillard reaction. The possible inhibitory mechanism of GLP on the AGEs included scavenging free radicals, capturing dicarbonyl compounds, forming polyphenol−protein compounds, and reducing the formation of glucose. Therefore, the work demonstrated that the addition of plant polyphenols may be a promising method to inhibit AGEs formation in food.
Collapse
Affiliation(s)
- Mengna Zhao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.X.); (F.L.); Tel.: +86-451-55191289 (X.X.); +86-451-82190222 (F.L.)
| | - Fangfei Li
- College of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence: (X.X.); (F.L.); Tel.: +86-451-55191289 (X.X.); +86-451-82190222 (F.L.)
| |
Collapse
|
8
|
In Vitro and In Vivo Antidiabetic Potential of Monoterpenoids: An Update. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010182. [PMID: 35011414 PMCID: PMC8746715 DOI: 10.3390/molecules27010182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic condition characterized by persistent hyperglycemia due to insufficient insulin levels or insulin resistance. Despite the availability of several oral and injectable hypoglycemic agents, their use is associated with a wide range of side effects. Monoterpenes are compounds extracted from different plants including herbs, vegetables, and fruits and they contribute to their aroma and flavor. Based on their chemical structure, monoterpenes are classified into acyclic, monocyclic, and bicyclic monoterpenes. They have been found to exhibit numerous biological and medicinal effects such as antipruritic, antioxidant, anti-inflammatory, and analgesic activities. Therefore, monoterpenes emerged as promising molecules that can be used therapeutically to treat a vast range of diseases. Additionally, monoterpenes were found to modulate enzymes and proteins that contribute to insulin resistance and other pathological events caused by DM. In this review, we highlight the different mechanisms by which monoterpenes can be used in the pharmacological intervention of DM via the alteration of certain enzymes, proteins, and pathways involved in the pathophysiology of DM. Based on the fact that monoterpenes have multiple mechanisms of action on different targets in in vitro and in vivo studies, they can be considered as lead compounds for developing effective hypoglycemic agents. Incorporating these compounds in clinical trials is needed to investigate their actions in diabetic patients in order to confirm their ability in controlling hyperglycemia.
Collapse
|
9
|
Balahbib A, El Omari N, Hachlafi NE, Lakhdar F, El Menyiy N, Salhi N, Mrabti HN, Bakrim S, Zengin G, Bouyahya A. Health beneficial and pharmacological properties of p-cymene. Food Chem Toxicol 2021; 153:112259. [PMID: 33984423 DOI: 10.1016/j.fct.2021.112259] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
p-cymene also known as p-cymol or p-isopropyltoluene is an alkyl-substituted aromatic compound naturally occurring in essential oils (EOs) of various aromatic plants, including the genus of Artemisia, Protium, Origanum, and Thymus. It is related to the family of terpenes, especially monocyclic monoterpenes. p-cymene is also present in several food-based plants such as carrots, orange juice, grapefruit, tangerine, raspberries and several spices. Numerous studies have demonstrated the pharmacological properties of the monoterpenes p-cymene, including antioxidant, anti-inflammatory, antiparasitic, antidiabetic, antiviral, antitumor, antibacterial, and antifungal activities. The p-cymene has also been reported to act as an analgesic, antinociceptive, immunomodulatory, vasorelaxant and neuroprotective agent. Its anticancer effects are related to some mechanisms such as the inhibition of apoptosis and cell cycle arrest. In this review, we critically highlighted the in vitro and in vivo pharmacological properties of the p-cymene molecule, providing insight into its mechanisms of action and potential applications in drug discovery. In light of this finding, in-depth in vivo studies are strongly required to validate the safety and beneficial effects of the p-cymene molecule in human healthcare and industrial applications as a potential source of drug discovery.
Collapse
Affiliation(s)
- Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, And Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Naoufal El Hachlafi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohmed Ben Abdellah University, P.O.Box-2002, Imouzzer Road Fez, Morocco
| | - Fatima Lakhdar
- Department of Biology, Laboratory of Marine Biotechnology and Environment, Faculty of Sciences, ChouaibDoukkali University, BP 20, El Jadida, 24000, Morocco
| | - Naoual El Menyiy
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and of Life (SNAMOPEQ). Faculty of Sciences Dhar El Mahraz. University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Najoua Salhi
- Laboratory of Pharmacology and Toxicology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, BP 6203, Rabat, Morocco
| | - Saad Bakrim
- Laboratory of Molecular Engineering, Valorization and Environment, Department of Sciences and Techniques, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Taroudant, Morocco
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, And Genomic Center of Human Pathologies, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
10
|
Dougnon G, Ito M. Role of Ascaridole and p-Cymene in the Sleep-Promoting Effects of Dysphania ambrosioides Essential Oil via the GABAergic System in a ddY Mouse Inhalation Model. JOURNAL OF NATURAL PRODUCTS 2021; 84:91-100. [PMID: 33325703 DOI: 10.1021/acs.jnatprod.0c01137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The essential oil obtained from Dysphania ambrosioides leaves (DAEO) has antifungal, antioxidant, and antimicrobial properties. This study investigated DAEO's chemical composition and its sleep-promoting effects via administration by inhalation in ddY mice. Ascaridole (35.5%) and p-cymene (47.2%) were the major components. To obtain insight into DAEO's effects on the central nervous system (CNS), ascaridole and p-cymene were evaluated for sedative activity by using the caffeine-treated excitatory mouse model. DAEO administration significantly decreased locomotor activity at all doses except 0.000 04 mg per 400 μL of triethyl citrate. Both ascaridole and p-cymene were highly effective in decreasing locomotor activity of excited mice by more than 50%. In addition, ascaridole and p-cymene prolonged the pentobarbital-induced sleeping duration by 42% and 77%, respectively. These effects were antagonized by coadministration of gamma-aminobutyric acid (GABAA)-benzodiazepine receptor antagonist, flumazenil (3 mg/kg), indicating that the GABAergic system mediates the sedative effect. Finally, inhaled ascaridole and p-cymene had no negative effect on motor coordination, as observed during the Rota-rod test. Therefore, via activation of the GABAergic system, ascaridole and p-cymene mediate the sleep-promoting effect of DAEO. The results further extend the knowledge on their use as potential promising natural products for the management of sleep disorders and CNS-related ailments.
Collapse
Affiliation(s)
- Godfried Dougnon
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Michiho Ito
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Healthy eating recommendations: good for reducing dietary contribution to the body's advanced glycation/lipoxidation end products pool? Nutr Res Rev 2020; 34:48-63. [PMID: 32450931 DOI: 10.1017/s0954422420000141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present review aims to give dietary recommendations to reduce the occurrence of the Maillard reaction in foods and in vivo to reduce the body's advanced glycation/lipoxidation end products (AGE/ALE) pool. A healthy diet, food reformulation and good culinary practices may be feasible for achieving the goal. A varied diet rich in fresh vegetables and fruits, non-added sugar beverages containing inhibitors of the Maillard reaction, and foods prepared by steaming and poaching as culinary techniques is recommended. Intake of supplements and novel foods with low sugars, low fats, enriched in bioactive compounds from food and waste able to modulate carbohydrate metabolism and reduce body's AGE/ALE pool is also recommended. In conclusion, the recommendations made for healthy eating by the Spanish Society of Community Nutrition (SENC) and Harvard University seem to be adequate to reduce dietary AGE/ALE, the body's AGE/ALE pool and to achieve sustainable nutrition and health.
Collapse
|
12
|
|
13
|
Cao X, Xia Y, Zeng M, Wang W, He Y, Liu J. Caffeic Acid Inhibits the Formation of Advanced Glycation End Products (AGEs) and Mitigates the AGEs-Induced Oxidative Stress and Inflammation Reaction in Human Umbilical Vein Endothelial Cells (HUVECs). Chem Biodivers 2019; 16:e1900174. [PMID: 31419039 DOI: 10.1002/cbdv.201900174] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/15/2019] [Indexed: 12/29/2022]
Abstract
The advanced glycation end products (AGEs) are the compounds produced by non-enzymatic glycation reaction of proteins and sugars, which can induce the generation of free radicals and the expression of inflammatory factors, thereby playing an important role in vascular dysfunction in diabetes. To investigate the effects of caffeic acid (CA) on glycation formed by glucose and protein, various spectroscopic techniques and molecular docking methods were carried out. Furthermore, the protective effects of CA on human umbilical vein endothelial cells (HUVECs) damaged by AGEs were detected. The results indicated that CA inhibited AGEs formation in vitro, decreased the expression of IL-1β, IL-18, ICAM-1, VCAM-1, NLRP3, Caspase-1 and CRP (C-reactive protein) and reduced the ROS in HUVECs exposed to AGEs. Our findings suggested that the supplementation with dietary CA could prevent and delay the AGEs-induced vascular dysfunction in diabetes.
Collapse
Affiliation(s)
- Xiangyu Cao
- School of Life Sciences, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, P. R. China
| | - Ying Xia
- School of Life Sciences, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, P. R. China
| | - Meng Zeng
- Tianjin Academy of Environmental Sciences, 17 Fukang Road Nankai District, Tianjin, 300191, P. R. China
| | - Weiyu Wang
- School of Life Sciences, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, P. R. China
| | - Yin He
- School of Life Sciences, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, P. R. China
| | - Jianli Liu
- School of Life Sciences, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, P. R. China
| |
Collapse
|
14
|
Kazeem MI, Bankole HA, Fatai AA, Adenowo AF, Davies TC. Antidiabetic Functional Foods with Antiglycation Properties. REFERENCE SERIES IN PHYTOCHEMISTRY 2019:1283-1310. [DOI: 10.1007/978-3-319-78030-6_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Identification and inhibitory activities of ellagic acid- and kaempferol-derivatives from Mongolian oak cups against α-glucosidase, α-amylase and protein glycation linked to type II diabetes and its complications and their influence on HepG2 cells’ viability. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2017.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
16
|
Improved Methods for the Rapid Formation and Prevention of Advanced Glycation End Products (AGEs) In Vitro by Coupling to the Hypoxanthine/Xanthine Oxidase Assay System. Biomedicines 2018; 6:biomedicines6030088. [PMID: 30111701 PMCID: PMC6164639 DOI: 10.3390/biomedicines6030088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/19/2023] Open
Abstract
Advanced glycation end products (AGEs) represent a set of molecules that contribute directly to the initiation and aggravation of diseases associated with ageing. AGEs are produced by the reaction between reducing sugars (or α-dicarbonyl compounds), proteins, and amino acid residues. Previous in vitro methods using non-enzymatic procedures described in the literature require an incubation period of 1–3 weeks to generate AGEs. In this study, the reaction time for the formation of AGEs (48 and 3 h) was significantly reduced by adaptation of methods previously described in the literature and coupling them to the free radical generation system termed hypoxanthine/xanthine oxidase assay. The incorporation of this assay into the experimental system accelerated the production of AGEs as a result of the formation of reactive oxygen species (ROS), as shown by increased fluorescence. The capacity of different classes of chemical compounds (aminoguanidine, chlorogenic acid, rutin, and methanol extracts of Hancornia speciosa Gomes) to inhibit protein glycation by acting as scavenging agents of α-dicarbonyl species was evaluated. Aminoguanidine and, especially, rutin identified in the leaf extracts of H. speciosa Gomes showed a high capacity to act as scavengers of reactive carbonyl species RCS-trapping, resulting in the inhibition of AGEs formation.
Collapse
|
17
|
Prasanna G, Jing P. Cyanidin-3-O-glucoside functions like chemical chaperone and attenuates the glycation mediated amyloid formation in albumin. Arch Biochem Biophys 2018; 643:50-56. [PMID: 29475050 DOI: 10.1016/j.abb.2018.02.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/29/2018] [Accepted: 02/19/2018] [Indexed: 01/04/2023]
Abstract
In this study, chemical chaperone like function of cyanidin-3-O-glucoside (C3G) was investigated through fluorescence spectroscopy, UV-visible spectroscopy, circular dichroism spectroscopy, confocal microscopy, scanning electron microscopy and molecular docking studies. Early and advanced glycation inhibitory effect was evaluated by fluorescence spectroscopy and agarose gel electrophoresis. Amyloids were investigated based on their propensity to bind Congo Red (CR) and Thioflavin T (ThT) by multiple microscopic approaches. Circular dichroism studies were used to analyze the changes in the secondary structure due to glycation. C3G effectively inhibited early and advanced glycation by masking like function, carbonyl scavenging and chemical chaperone activity. C3G had molecular interaction with Glu186, Arg427, Ser428, Lys431, Arg435, and Arg458 of BSA. Based on the microscopic analysis, it is evident that C3G can inhibit protein aggregation and amyloid formation. Circular dichroism studies suggested that glycation had resulted in augmented β-sheet propensity, whereas C3G had a protective effect on the helical conformation of BSA. We conclude that C3G has a chemical chaperone like function on the event of glycation mediated amyloid formation in BSA.
Collapse
Affiliation(s)
- Govindarajan Prasanna
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Jing
- Research Center for Food Safety and Nutrition, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Abbasi S, Gharaghani S, Benvidi A, Rezaeinasab M. New insights into the efficiency of thymol synergistic effect with p -cymene in inhibiting advanced glycation end products: A multi-way analysis based on spectroscopic and electrochemical methods in combination with molecular docking study. J Pharm Biomed Anal 2018; 150:436-451. [DOI: 10.1016/j.jpba.2017.12.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 01/13/2023]
|
19
|
Benvidi A, Rezaeinasab M, Gharaghani S, Abbasi S. Monitoring the protective ability of thymoquinone mixture with p-cymene against bovine serum albumin (BSA) glycation: MCR-ALS analysis based on combined spectroscopic and electrochemical methods. Int J Biol Macromol 2018; 107:2465-2474. [DOI: 10.1016/j.ijbiomac.2017.10.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/27/2022]
|
20
|
Wang J, Zou L, Yuan F, Lv L, Tian S, Li Z, Lin H. Inhibition of advanced glycation endproducts during fish sausage preparation by transglutaminase and chitosan oligosaccharides induced enzymatic glycosylation. Food Funct 2018; 9:253-262. [DOI: 10.1039/c7fo01092c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A non-antioxidative method in which glycosylation induced by transglutaminase “replaced” glycation to inhibit the formation of AGEs in real foods.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory of Food Safety
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | - Long Zou
- Bunge Ingredient Innovation Center
- Bradley
- USA
| | - Fangzhou Yuan
- Laboratory of Food Safety
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | - Liangtao Lv
- Laboratory of Food Safety
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | - Shenglan Tian
- Laboratory of Food Safety
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | - Zhenxing Li
- Laboratory of Food Safety
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | - Hong Lin
- Laboratory of Food Safety
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| |
Collapse
|
21
|
Habtemariam S. Antidiabetic Potential of Monoterpenes: A Case of Small Molecules Punching above Their Weight. Int J Mol Sci 2017; 19:ijms19010004. [PMID: 29267214 PMCID: PMC5795956 DOI: 10.3390/ijms19010004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022] Open
Abstract
Monoterpenes belong to the terpenoids class of natural products and are bio-synthesized through the mevalonic acid pathway. Their small molecular weight coupled with high non-polar nature make them the most abundant components of essential oils which are often considered to have some general antioxidant and antimicrobial effects at fairly high concentrations. These compounds are however reported to have antidiabetic effects in recent years. Thanks to the ingenious biosynthetic machinery of nature, they also display a fair degree of structural complexity/diversity for further consideration in structure-activity studies. In the present communication, the merit of monoterpenes as antidiabetic agents is scrutinized by assessing recent in vitro and in vivo studies reported in the scientific literature. Both the aglycones and glycosides of these compounds of rather small structural size appear to display antidiabetic along with antiobesity and lipid lowering effects. The diversity of these effects vis-à-vis their structures and mechanisms of actions are discussed. Some key pharmacological targets include the insulin signaling pathways and/or the associated PI3K-AKT (protein kinase B), peroxisome proliferator activated receptor-γ (PPARγ), glucose transporter-4 (GLUT4) and adenosine monophosphate-activated protein kinase (AMPK) pathways; proinflammatory cytokines and the NF-κB pathway; glycogenolysis and gluconeogenesis in the liver; glucagon-like-1 receptor (GLP-1R); among others.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
22
|
Kazeem MI, Bankole HA, Fatai AA, Adenowo AF, Davies TC. Antidiabetic Functional Foods with Antiglycation Properties. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-54528-8_16-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
23
|
Nicolli KP, Biasoto ACT, Souza-Silva ÉA, Guerra CC, Dos Santos HP, Welke JE, Zini CA. Sensory, olfactometry and comprehensive two-dimensional gas chromatography analyses as appropriate tools to characterize the effects of vine management on wine aroma. Food Chem 2017; 243:103-117. [PMID: 29146315 DOI: 10.1016/j.foodchem.2017.09.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/10/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
For the first time, the influence of different vine management was evaluated in relation to volatile profile and sensory perception through GC×GC/TOFMS, QDA, GC-FID, GC/MS, and GC-O. GC×GC/TOFMS analyses and QDA have shown that a larger spacing between vine rows (2 rather than 1m), attachment of shoots upwards, and irrigation did not result in wine improvement. Conversely, wines elaborated with grapes from a vine with a lower bud load (20 per plant; sample M1) stood out among the other procedures, rendering the most promising wine aroma. GC×GC/TOFMS allowed identification of 220 compounds including 26 aroma active compounds also distinguished by GC-O. Among them, eight volatiles were important to differentiate M1 from other wines, and five out of those eight compounds could only be correctly identified and quantified after separation in second dimension. Higher levels of three volatiles may explain the relation of M1 wine with red and dry fruits.
Collapse
Affiliation(s)
- Karine P Nicolli
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, RS, Brazil.
| | | | - Érica A Souza-Silva
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, RS, Brazil; Chemistry Department, Universidade Federal de São Paulo (UNIFESP), 09972-270 Diadema, Brazil
| | | | | | - Juliane E Welke
- Institute of Food Science and Technology, UFRGS, 91501970 Porto Alegre, RS, Brazil.
| | - Cláudia A Zini
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), 91501970 Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. MATERIALS 2017; 10:ma10080947. [PMID: 28809799 PMCID: PMC5578313 DOI: 10.3390/ma10080947] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 11/16/2022]
Abstract
p-Cymene [1-methyl-4-(1-methylethyl)-benzene] is a monoterpene found in over 100 plant species used for medicine and food purposes. It shows a range of biological activity including antioxidant, anti-inflammatory, antinociceptive, anxiolytic, anticancer and antimicrobial effects. This last property has been widely investigated due to the urgent need for new substances with antimicrobial properties, to be used to treat communicable diseases whose diffusion in developed countries has been facilitated by globalization and the evolution of antimicrobial resistance. This review summarizes available scientific data, as reported by the most recent studies describing the antimicrobial activity of p-cymene either alone, or as the main component of plant extracts, as well as addressing the mechanisms of action of cymenes as antimicrobial agents. While p-cymene is one of the major constituents of extracts and essential oils used in traditional medicines as antimicrobial agents, but considering the limited data on its in vivo efficacy and safety, further studies are required to reach a definitive recommendation on the use and beneficial effects of p-cymene in human healthcare and in biomedical applications as a promising candidate to functionalize biomaterials and nanomaterials.
Collapse
|
25
|
Effective inhibition of protein glycation by combinatorial usage of limonene and aminoguanidine through differential and synergistic mechanisms. Int J Biol Macromol 2017; 99:563-569. [DOI: 10.1016/j.ijbiomac.2017.02.104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/21/2017] [Accepted: 02/20/2017] [Indexed: 11/19/2022]
|
26
|
Prasanna G, Hari N, Saraswathi N. Hydroxy methoxy benzaldehyde from Sesbania grandilfora inhibits the advanced glycation end products (AGEs)-mediated fibrillation in hemoglobin. J Biomol Struct Dyn 2017; 36:819-829. [DOI: 10.1080/07391102.2017.1300543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- G. Prasanna
- Molecular Biophysics Laboratory, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu 613401, India
| | - N. Hari
- NMR Laboratory, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu 613401, India
| | - N.T. Saraswathi
- Molecular Biophysics Laboratory, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu 613401, India
| |
Collapse
|
27
|
Byun K, Yoo Y, Son M, Lee J, Jeong GB, Park YM, Salekdeh GH, Lee B. Advanced glycation end-products produced systemically and by macrophages: A common contributor to inflammation and degenerative diseases. Pharmacol Ther 2017; 177:44-55. [PMID: 28223234 DOI: 10.1016/j.pharmthera.2017.02.030] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advanced glycation end products (AGEs) and their receptor have been implicated in the progressions of many intractable diseases, such as diabetes and atherosclerosis, and are also critical for pathologic changes in chronic degenerative diseases, such as Alzheimer's disease, Parkinson's disease, and alcoholic brain damage. Recently activated macrophages were found to be a source of AGEs, and the most abundant form of AGEs, AGE-albumin excreted by macrophages has been implicated in these diseases and to act through common pathways. AGEs inhibition has been shown to prevent the pathogenesis of AGEs-related diseases in human, and therapeutic advances have resulted in several agents that prevent their adverse effects. Recently, anti-inflammatory molecules that inhibit AGEs have been shown to be good candidates for ameliorating diabetic complications as well as degenerative diseases. This review was undertaken to present, discuss, and clarify current understanding regarding AGEs formation in association with macrophages, different diseases, therapeutic and diagnostic strategy and links with RAGE inhibition.
Collapse
Affiliation(s)
- Kyunghee Byun
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Republic of Korea; Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon 406-799, Republic of Korea
| | - YongCheol Yoo
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 305-811, Republic of Korea
| | - Myeongjoo Son
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon 406-799, Republic of Korea
| | - Jaesuk Lee
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Republic of Korea
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon 406-799, Republic of Korea
| | - Young Mok Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 305-811, Republic of Korea.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Bonghee Lee
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Republic of Korea; Department of Anatomy and Cell Biology, Gachon University Graduate School of Medicine, Incheon 406-799, Republic of Korea.
| |
Collapse
|
28
|
Linolenic acid prevents early and advanced glycation end-products (AGEs) modification of albumin. Int J Biol Macromol 2017; 95:121-125. [DOI: 10.1016/j.ijbiomac.2016.11.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/08/2016] [Accepted: 11/10/2016] [Indexed: 02/01/2023]
|
29
|
Hsia SM, Lee WH, Yen GC, Wu CH. Capsaicin, an active ingredient from chilli peppers, attenuates glycative stress and restores sRAGE levels in diabetic rats. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Prasanna G, Saraswathi NT. Aspartic acid functions as carbonyl trapper to inhibit the formation of advanced glycation end products by chemical chaperone activity. J Biomol Struct Dyn 2015; 34:943-51. [PMID: 26325019 DOI: 10.1080/07391102.2015.1060160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Advanced glycation end products (AGEs) were implicated in pathology of numerous diseases. In this study, we present the bioactivity of aspartic acid (Asp) to inhibit the AGEs. Hemoglobin and bovine serum albumin (BSA) were glycated with glucose, fructose, and ribose in the presence and absence of Asp (100-200 μM). HbA1c inhibition was investigated using human blood and characterized by micro-column ion exchange chromatography. The effect of methyl glyoxal (MG) on hemoglobin and BSA was evaluated by fluorescence spectroscopy and gel electrophoresis. The effect of MG on red blood cells morphology was characterized by scanning electron micrographs. Molecular docking was performed on BSA with Asp. Asp is capable of inhibiting the formation of fluorescent AGEs by reacting with the reducing sugars. The presence of Asp as supplement in whole blood reduced the HbA1c% from 8.8 to 6.1. The presence of MG showed an increase in fluorescence and the presence of Asp inhibited the glycation thereby the fluorescence was quenched. MG also affected the electrophoretic mobility of hemoglobin and BSA by forming high molecular weight aggregates. Normal RBCs showed typical biconcave shape. MG modified RBCs showed twisted and elongated shape whereas the presence of ASP tends to protect RBC from twisting. Asp interacted with arginine residues of bovine serum albumin particularly ARG 194, ARG 198, and ARG 217 thereby stabilized the protein complex. We conclude that Asp has dual functions as a chemical chaperone to stabilize protein and as a dicarbonyl trapper, and thereby it can prevent the complications caused by glycation.
Collapse
Affiliation(s)
- Govindarajan Prasanna
- a Molecular Biophysics Laboratory, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613401 , India
| | - N T Saraswathi
- a Molecular Biophysics Laboratory, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613401 , India
| |
Collapse
|
31
|
Determination of Nɛ-Carboxymethyl-lysine Content in Muscle Tissues of Turbot by Gas Chromatography-Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60847-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|