1
|
Ding X, Li T, Zhao J, Khalid W, Fan M, Qian H, Li Y, Wang L. Effect of various extraction methods on the physicochemical properties, antioxidant, and anti-inflammatory activities of mung bean (Vigna radiata L.) skin polysaccharides. Int J Biol Macromol 2025; 311:143969. [PMID: 40334879 DOI: 10.1016/j.ijbiomac.2025.143969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/18/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
The study explores the extraction and characterization of polysaccharides from mung bean (Vigna radiata L.) skin, a by-product of processing, to assess their antioxidant and anti-inflammatory properties. Four extraction methods were employed, producing polysaccharides: hot water extracted polysaccharide (H-MBP), alkali-extracted polysaccharide (AL-MBP), acid extracted polysaccharide (AO-MBP), and enzyme-extracted polysaccharide (E-MBP). Among these, AL-MBP exhibited the highest extraction yield (4.08 ± 0.12 %) and the lowest molecular weight (11.9 kDa), demonstrating superior antioxidant activity with DPPH scavenging at 89.22 ± 7.61 % at 2 mg/mL, ABTS+ scavenging at 97.01 ± 0.08 % at 4 mg/mL, and a FRAP antioxidant capacity of 107.35 ± 2.87 mg AAE/g DW at 5 mg/mL. H-MBP, on the other hand, showed significant anti-inflammatory effects by inhibiting LPS-induced mRNA expression of IL-6 and TNF-α in Caco-2 cells. These findings highlight the potential of mung bean skin polysaccharides as novel antioxidant and anti-inflammatory agents, providing valuable insights for application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiao Ding
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Province 210037, China
| | - Jiajia Zhao
- College of Cooking Science and Technology, Jiangsu College of Tourism, 88 Yuxiu Road, Yangzhou 225000, China
| | - Wafaa Khalid
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingcon Fan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
2
|
Zhou X, Zhao W, Ye Z, Tang J, Zhang Y. Optimizing the Methodology for Antioxidant Activity Analysis of Manuka Honey. Foods 2025; 14:1341. [PMID: 40282743 PMCID: PMC12027450 DOI: 10.3390/foods14081341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
Manuka honey (MH) is increasingly recognized for its potent antioxidant properties, making it a promising functional food ingredient. However, discrepancies in assessment methods have impeded the standardization of its antioxidant capacity. This study compared DPPH, ABTS, and cellular antioxidant activity (CAA) assays under varying conditions to identify the most reliable approach for assessing MH's antioxidant properties. The results showed that the reaction temperature for the chemical method, setting it at 37 °C, enhanced the antioxidant capacity of MH. For the cellular assay, we optimized honey concentration, injury duration, damage model, and cell model. The result showed that sugar-reduced MH achieved the same high efficiency as the chemical method. A stable cellular assay method was established in HepG2 cells, offering superior reproducibility with an intra-RSD of 4.83% (<5%) and an inter-RSD of 7.51% (<10%). Additionally, studies have found that methyl syringate (MSY), a key polyphenolic compound in Manuka honey (MH), exhibits extremely high antioxidant activity. However, due to its low concentration, its overall contribution to the honey's antioxidant activity is limited. This optimized CAA-based approach provides reliable technical support for the accurate evaluation of the antioxidant activity of MH.
Collapse
Affiliation(s)
| | | | | | | | - Yafen Zhang
- Key Laboratory of Microbial Quantitative Detection and Biological Product Quality and Safety, State Administration for Market Regulation, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (X.Z.); (W.Z.); (Z.Y.); (J.T.)
| |
Collapse
|
3
|
Bansal S, Tomer A, Singh A, Tyagi N, Kushwaha HR, Jain P. In-vitro assay studies and molecular docking of functionalized chitosan decorated vanadium pentoxide nano-agents as an antidiabetic drug. Int J Biol Macromol 2025; 298:139986. [PMID: 39826716 DOI: 10.1016/j.ijbiomac.2025.139986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
This study aims to enhance the antidiabetic potential of Vanadium pentoxide (V2O5) by synthesizing chitosan-based nanoparticles (NPs). Chitosan and its derivatives were used to fabricate V2O5 NPs, ensuring enhanced antioxidant and antidiabetic activity. Surface topography was analyzed using atomic force microscopy (AFM), revealing bioactive sites on the NPs with improved electron-transfer capability, as confirmed by cyclic voltammetry (CV). Furthermore, NPs were exploited for their possible antioxidant and antidiabetic potency by using different in-vitro assays. Among the fabricated NPs, chitosan-salicylaldehyde decorated V2O5 NPs (CHVD2) exhibited highest antidiabetic activity with 72.69 ± 0.76 % inhibition against α-amylase, 69.15 ± 0.58 % inhibition against α-glucosidase, and glycemic diffusion retardation index (GDRI) of 60.33 ± 0.47 %. Importantly, CHVD2 did not inhibit the growth of Bifidobacterium bacteria, as shown by disc-diffusion assay and exhibit least cytotoxicity among all NPs as tested on HacaT cell line. Molecular docking studies revealed strong binding interactions between CHVD2 and the target enzymes, α-amylase, and α-glucosidase supporting its inhibitory potential. This work demonstrates the promising enhanced antidiabetic and antioxidant properties of chitosan-coated V2O5 NPs.
Collapse
Affiliation(s)
- Smriti Bansal
- Dept. of Chemistry, Netaji Subhas University of Technology (N.S.U.T.), erstwhile N.S.I.T., Azad Hind Fauj Marg, Dwarka, Delhi 110078, India.
| | - Archana Tomer
- Dept. of Chemistry, Netaji Subhas University of Technology (N.S.U.T.), erstwhile N.S.I.T., Azad Hind Fauj Marg, Dwarka, Delhi 110078, India
| | - Anu Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nipanshi Tyagi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Purnima Jain
- Dept. of Chemistry, Netaji Subhas University of Technology (N.S.U.T.), erstwhile N.S.I.T., Azad Hind Fauj Marg, Dwarka, Delhi 110078, India.
| |
Collapse
|
4
|
Delgado Rodríguez F, Azofeifa G, Quesada S, Weng Huang NT, Loría Gutiérrez A, Morales Rojas MF. Influence of Plant Part Selection and Drying Technique: Exploration and Optimization of Antioxidant and Antibacterial Activities of New Guinea Impatiens Extracts. PLANTS (BASEL, SWITZERLAND) 2025; 14:1092. [PMID: 40219160 PMCID: PMC11991338 DOI: 10.3390/plants14071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
Impatiens L. plants are sources of polyphenols with antioxidant and antimicrobial activities. There are scarce data about these effects in the case of Impatiens hawkeri W. Bull, a relevant species in ornamental plant industry with ethnobotanical backgrounds. The aim of this study is to provide information regarding the antioxidant and the antibacterial properties of the ethanol extracts of I. hawkeri to support new applications. HPTLC was used to estimate the concentration of seven known bioactive metabolites reported among Impatiens plants. Total phenolics, flavonoids, and monomeric anthocyanins were also measured. An orthogonal platform with chemical and biological in vitro assays was used to evaluate the antioxidant activity of the extracts. Antibacterial activity was determined by broth microdilution assay on human pathogenic bacteria. The results were integrated by correlation and principal component analysis to identify the most promissory plant part and drying technique to optimize the evaluated activities. Data suggest the tentative identification of bioactive chemical markers for the antioxidant and antibacterial activities of the extracts (quercetin and rutin). Freeze-dried leaves and flowers are the most promissory parts of I. hawkeri for the development of antioxidant nutraceuticals or preservatives. The results demonstrate that phenolic compounds play a major role in the antioxidant and antibacterial activities of I. hawkery extracts.
Collapse
Affiliation(s)
- Fabián Delgado Rodríguez
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (N.T.W.H.); (A.L.G.); (M.F.M.R.)
| | - Gabriela Azofeifa
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (G.A.); (S.Q.)
| | - Silvia Quesada
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (G.A.); (S.Q.)
| | - Nien Tzu Weng Huang
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (N.T.W.H.); (A.L.G.); (M.F.M.R.)
| | - Arlene Loría Gutiérrez
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (N.T.W.H.); (A.L.G.); (M.F.M.R.)
| | - María Fernanda Morales Rojas
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica; (N.T.W.H.); (A.L.G.); (M.F.M.R.)
| |
Collapse
|
5
|
Mayorga-Ramos A, Zúñiga-Miranda J, Coyago-Cruz E, Heredia-Moya J, Guamán-Bautista J, Guamán LP. Phytochemical Composition and Biological Properties of Macleania rupestris Fruit Extract: Insights into Its Antimicrobial and Antioxidant Activity. Antioxidants (Basel) 2025; 14:394. [PMID: 40298645 PMCID: PMC12024342 DOI: 10.3390/antiox14040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Macleania rupestris, a fruit-bearing species of the Ericaceae family, has traditionally been used for its potential medicinal properties. BACKGROUND/OBJECTIVES This study investigates the phytochemical composition and antimicrobial activity of M. rupestris fruit extract, focusing on its antibacterial, antibiofilm, and antifungal effects. METHODS M. rupestris (Kunth) A.C.Sm. berries (code: 4456, Herbario QUPS-Ecuador) were collected from the cloud forest Montano Alto, Cuenca-Ecuador, and the extract was obtained using an ethanolic-based extraction and chemically characterized. The antibacterial and antifungal activity of the fruit extract was assessed against seven multidrug-resistant bacteria strains and four fungal strains using the microdilution method. The biofilm inhibition potential was evaluated using a microplate assay with the crystal violet staining method. The antioxidant activity was evaluated using DPPH and ABTS assays. RESULTS The bioactive compounds showed 853.9 mg phenols/100 g DW, 573.2 mg organic acid/100 g DW, and 21.5 mg C-3-gl/100 g DW of anthocyanins. The antibacterial assays demonstrated significant inhibitory activity against Enterococcus faecalis, Enterococcus faecium, Escherichia coli, and Staphylococcus epidermidis, with MIC values ranging from 1.25 to 5 mg/mL. Additionally, the biofilm inhibition assays confirmed the potential of M. rupestris extract to disrupt bacterial biofilms, particularly in S. aureus and L. monocytogenes. Nevertheless, no significant antifungal activity was observed against Candida spp., suggesting selective antimicrobial properties. Finally, the antioxidant activity was strong (1.62 mmol TE/100 g DW by DPPH and 3.28 mmol TE/100 g DW by ABTS). CONCLUSIONS These findings indicate that M. rupestris possesses promising antibacterial, antibiofilm, and antioxidant properties, which may be attributed to its phenolic and organic acid composition. Further fractionation and targeted bioassays are required to elucidate the specific bioactive compounds responsible for these effects and explore their potential applications in antimicrobial formulations.
Collapse
Affiliation(s)
- Arianna Mayorga-Ramos
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador; (A.M.-R.); (J.Z.-M.); (J.H.-M.)
| | - Johana Zúñiga-Miranda
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador; (A.M.-R.); (J.Z.-M.); (J.H.-M.)
| | - Elena Coyago-Cruz
- Carrera de Ingeniería en Biotecnología de los Recursos Naturales, Universidad Politécnica Salesiana, Sede Quito, Campus El Girón, Av. 12 de Octubre N2422 y Wilson, Quito 170143, Ecuador;
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador; (A.M.-R.); (J.Z.-M.); (J.H.-M.)
| | - Jéssica Guamán-Bautista
- Facultad de Ciencias de la Hospitalidad, Carrera de Gastronomía, Universidad de Cuenca, Cuenca 010201, Ecuador;
| | - Linda P. Guamán
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador; (A.M.-R.); (J.Z.-M.); (J.H.-M.)
| |
Collapse
|
6
|
Wang M, Chen X, Wang Z, Li M. Confirmation of radicals auto-generated in [Bmim][PF 6]/[C 16mim][PF 6]/water reverse micelles and the radical quantification based on the 1,1-diphenyl-2-picrylhydrazine (DPPHH) spectroscopic probe. ANAL SCI 2025:10.1007/s44211-025-00744-6. [PMID: 40113732 DOI: 10.1007/s44211-025-00744-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Ionic liquids (ILs) which belong to the molten salt of a high ionic environment exhibit a number of unique properties, including the formation of various heterogeneities in their microemulsion. We found that auto-generated radicals within a [Bmim][PF6]/[C16mim][PF6]/PBS reverse micelles (IL-RMs) and then the radicals were quantified in this study. For the radical confirmation, EPR spectroscopy with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) free radical scavenger was carried out. A spectroscopic chemical probe of 1,1-diphenyl-2-picrylhydrazine (DPPHH) was employed to quantify the radicals in the IL-RM systems. The mechanism of the radical generation was also proposed. The DPPHH probe method is simple, rapid, and sensitive to quantify free radicals in the IL-RM systems. Finally, IL-RMs were successfully applied to degrade Rhodamine B (Rho-B) dye with low degradation cost, simple operation, short time consumption, and remarkable degradation effect. The results show a near 100% degradation rate for 10 μmol·L-1 Rho-B in the IL-RMs system with pH 7.4 PBS containing 1 mmol·L-1 chloroacetic acid as an aqueous phase.
Collapse
Affiliation(s)
- Mengge Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Xiaofeng Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Zhigang Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Ming Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China.
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, People's Republic of China.
| |
Collapse
|
7
|
Uzun DE, Nemli E, Apak R, Bener M, Tomas M, Yağcı S, Capanoglu E. Starch-based composite formulation of chickpea flour and black carrot (Daucus carota l.) pomace in extruded snacks: In vitro gastrointestinal behavior and stability of bioactive compounds. Int J Biol Macromol 2025; 293:139075. [PMID: 39710024 DOI: 10.1016/j.ijbiomac.2024.139075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Black carrot pomace (BCP) is a by-product of colorant production, containing various valuable components with the health promoting effects. In this study, for the first time, BCP was incorporated into a starch-based extruded snack formulation using wheat semolina and corn starch. Total phenolic content, total antioxidant capacity, phenolics, and anthocyanins after processing and in vitro gastrointestinal digestion were investigated, and physical and textural properties of the snack products were determined. Incorporating BCP significantly raised the TPC and antioxidant levels, notably achieving peak levels in snacks enriched with 20 % BCP. The phenolic acids and anthocyanins were increased significantly (48-382 %) (p < 0.05) with simulated gastric digestion whereas no anthocyanins were detected after simulated intestinal digestion. On the other hand, the extrusion process resulted in a negative impact on anthocyanin concentrations, particularly marked by a significant reduction in some cyanidin derivatives indicating the detrimental effect of extrusion on the molecular integrity of anthocyanins under high temperature and pressure, leading to their degradation. In the final product, the snacks displayed lower expansion indices, water absorption index, water solubility index, and lightness; but had higher hardness and redness values compared to the control and turned slightly darker. The study proposes to evaluate BCP as a value-added ingredient that imparts functional properties to foods along with the utilization of starch in the extrusion process. Additionally, the integration of wheat semolina and corn starch contributed to the structural integrity and texture of the extruded snacks, highlighting the importance of polysaccharides in the formulation.
Collapse
Affiliation(s)
- Damla Ezgi Uzun
- Department of Food Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Elifsu Nemli
- Department of Food Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Resat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, 34320 Avcilar, Istanbul, Türkiye; Turkish Academy of Sciences (TUBA), Vedat Dalokay St. No. 112, 06670 Cankaya, Ankara, Türkiye
| | - Mustafa Bener
- Department of Chemistry, Faculty of Science, Istanbul University, 34134 Fatih, Istanbul, Türkiye
| | - Merve Tomas
- Department of Food Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Sibel Yağcı
- Department of Food Engineering, Balikesir University, 10145 Balikesir, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye; Turkish Academy of Sciences (TUBA), Vedat Dalokay St. No. 112, 06670 Cankaya, Ankara, Türkiye.
| |
Collapse
|
8
|
Borges T, Coelho P, Prudêncio C, Gomes A, Gomes P, Ferraz R. Bioactive Peptides from Milk Proteins with Antioxidant, Anti-Inflammatory, and Antihypertensive Activities. Foods 2025; 14:535. [PMID: 39942128 PMCID: PMC11816975 DOI: 10.3390/foods14030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES Peptides from protein ingredients exhibit key biological activities, including antimicrobial, antihypertensive, antioxidant, anti-inflammatory, analgesic, and immunomodulatory effects. Aligning with the One Health approach, there is growing investment in promoting pet health and well-being. As a result, sustainable functional ingredients are increasingly essential for pet food development. In this work, peptides derived from lactoferrins of different mammalian species were synthesized and their antioxidant, anti-inflammatory, and antihypertensive activities were investigated. METHODS This study examined the antioxidant, anti-inflammatory, antihypertensive activities, and cytotoxicity of bioactive peptides derived from lactoferrins of various mammalian species through spectroscopical methods. The peptides were produced via chemical synthesis (bottom-up approach). RESULTS Peptides derived from bovine lactoferrin showed the most promising antioxidant and anti-inflammatory activities, whereas those derived from human lactoferrin showed the highest antihypertensive effects and the lowest cytotoxicity. In short, milk-derived peptides with antioxidant, anti-inflammatory, and antihypertensive activity were identified. CONCLUSIONS This motivates further studies to better characterize these peptides, including their properties and pharmacokinetics in vivo, to assess their true potential as nutraceutical agents.
Collapse
Affiliation(s)
- Thaís Borges
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal; (T.B.); (A.G.); (P.G.)
| | - Pedro Coelho
- RISE-Health, Center for Translational Health and Medical Biotechnology Research (TBIO), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (P.C.); (C.P.)
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Cristina Prudêncio
- RISE-Health, Center for Translational Health and Medical Biotechnology Research (TBIO), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (P.C.); (C.P.)
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Ana Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal; (T.B.); (A.G.); (P.G.)
| | - Paula Gomes
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal; (T.B.); (A.G.); (P.G.)
| | - Ricardo Ferraz
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, S/N, 4169-007 Porto, Portugal; (T.B.); (A.G.); (P.G.)
- RISE-Health, Center for Translational Health and Medical Biotechnology Research (TBIO), ESS, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (P.C.); (C.P.)
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| |
Collapse
|
9
|
Zhang J, Chen S, Yan H, Song Y, Li L, Yuan Y. Analysis of the bioactive parts and components of Aralia elata (Miq.) Seem based on non-targeted metabolomics and its hepatoprotective effects induced by cyclophosphamide. J Food Sci 2025; 90:e70057. [PMID: 39949249 DOI: 10.1111/1750-3841.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 05/09/2025]
Abstract
In the present study, non-targeted metabolomics was utilized to identify the bioactive components in the root, seed, and leaf of Aralia elata (Miq.) Seem (A. elata), a traditional Chinese specialty vegetable. The relative content indicated that saponins, flavonoids, and phenolic acids were the main bioactive components, whereas principal component analysis showed significant differences among the three parts. ABTS, DPPH, ferric reducing antioxidant power, and hydroxyl radical scavenging capacity assays were conducted to evaluate the antioxidant activities of extracts from the three parts, and the root extract demonstrated the highest antioxidant potential. Correlation analyses revealed that saponins possessed the best antioxidant capacity. Twelve saponins in the root were identified from the total saponins (tSAs) by liquid chromatography-high-resolution mass spectrometry. The protective effect of tSAs on cyclophosphamide-induced liver damage was evaluated using BRL-3A cells. The tSAs significantly enhanced the cellular antioxidant levels, reduced the levels of aspartate aminotransferase and alanine aminotransferase by 38.81% and 37.43%, respectively, and demonstrated evident hepatoprotective effects. PRACTICAL APPLICATION: This research could help develop dietary supplements rich in antioxidants from the roots of Aralia elata (Miq.) Seem and also pave the way for novel therapies for liver diseases.
Collapse
Affiliation(s)
- Junqi Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Shanshan Chen
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yadong Song
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Lu Li
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Yuan Yuan
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
10
|
Álvarez SA, Rocha-Guzmán NE, Gallegos-Infante JA, Cano-Dolado MP, Ibáñez E, Cifuentes A, Pérez-Martínez JD, Moreno-Jiménez MR, González-Laredo RF. Pressurized liquid extraction of oak leaf polyphenols: Solvent selection via Hansen parameters, antioxidant evaluation and monoamine-oxidase-a inhibition analysis. Food Chem 2025; 463:141212. [PMID: 39303468 DOI: 10.1016/j.foodchem.2024.141212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
This study focuses on the extraction of bioactive compounds from Quercus sideroxyla Bonpl., leaves which have been shown to possess health benefits. The extraction process was done using pressurized liquid extraction (PLE), which is efficient and preserves heat-sensitive compounds. Key factors in the process included the choice of solvents, pressure, temperature, and extraction duration. The Hansen solubility parameters analysis aided in selecting effective solvents, such as ethanol and benzyl alcohol. The extracts were found to contain phenolic compounds, flavonoids, and polyphenols with antioxidant properties. The UPLC-PDA-ESI-QqQ was employed for the precise identification and quantification of these compounds, demonstrating superior extraction of quinic acid and gallic acid at elevated temperatures. Notably, the extracts obtained through PLE exhibited significant inhibitory activity of the MAO-A enzyme, linked to neuronal and cognitive health, suggesting potential benefits in these areas.
Collapse
Affiliation(s)
- Saúl Alberto Álvarez
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/ I.T. de Durango (TecNM/ITD), Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., Mexico
| | - Nuria Elizabeth Rocha-Guzmán
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/ I.T. de Durango (TecNM/ITD), Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., Mexico..
| | - José Alberto Gallegos-Infante
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/ I.T. de Durango (TecNM/ITD), Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., Mexico..
| | - María Pilar Cano-Dolado
- Food Sciences Research Institute, CIAL, CSIC-UAM, Phytochemistry and Plant Foods Functionality Lab. Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Elena Ibáñez
- Food Sciences Research Institute, CIAL, CSIC-UAM, Laboratory of Foodomics. Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Alejandro Cifuentes
- Food Sciences Research Institute, CIAL, CSIC-UAM, Laboratory of Foodomics. Nicolas Cabrera 9, 28049 Madrid, Spain
| | - Jaime David Pérez-Martínez
- Facultad de Ciencias Químicas, UASLP, Dr. Manuel Nava, Zona Universitaria, San Luis Potosí, S.L.P, Mexico
| | - Martha Rocío Moreno-Jiménez
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/ I.T. de Durango (TecNM/ITD), Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., Mexico
| | - Rubén Francisco González-Laredo
- Laboratorio Nacional CONAHCYT de Apoyo a la Evaluación de Productos Bióticos (LaNAEPBi), Unidad de Servicio, Tecnológico Nacional de México/ I.T. de Durango (TecNM/ITD), Blvd. Felipe Pescador 1830 Ote., C.P. 34080, Durango, Dgo., Mexico
| |
Collapse
|
11
|
Elbouzidi A, Taibi M, El Hachlafi N, Haddou M, Jeddi M, Baraich A, Bougrine S, Mothana RA, Hawwal MF, Alobaid WA, Asehraou A, El Guerrouj B, Mrabti HN, Mesnard F, Addi M. Optimization of the Antibacterial Activity of a Three-Component Essential Oil Mixture from Moroccan Thymus satureioides, Lavandula angustifolia, and Origanum majorana Using a Simplex-Centroid Design. Pharmaceuticals (Basel) 2025; 18:57. [PMID: 39861120 PMCID: PMC11769045 DOI: 10.3390/ph18010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The rise of antibiotic-resistant pathogens has become a global health crisis, necessitating the development of alternative antimicrobial strategies. This study aimed to optimize the antibacterial effects of essential oils (EOs) from Thymus satureioides, Lavandula angustifolia, and Origanum majorana, enhancing their efficacy through optimized mixtures. METHODS This study utilized a simplex-centroid design to optimize the mixture ratios of EOs for maximal antibacterial and antioxidant effectiveness. The chemical profiles of the EOs were analyzed using gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was assessed against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa using minimum inhibitory concentration (MIC) tests, while antioxidant activity was evaluated through DPPH (2,2-diphenyl-1-picrylhydrazyl), and ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) assays. RESULTS The optimized essential oil mixtures demonstrated potent antibacterial activity, with MIC values of 0.097% (v/v) for E. coli, 0.058% (v/v) for S. aureus, and 0.250% (v/v) for P. aeruginosa. The mixture ratios achieving these results included 76% T. satureioides, and 24% O. majorana for E. coli, and varying proportions for other strains. Additionally, L. angustifolia essential oil exhibited the strongest antioxidant activity, with IC50 values of 84.36 µg/mL (DPPH), and 139.61 µg/mL (ABTS), surpassing both the other EOs and standard antioxidants like BHT and ascorbic acid in the ABTS assay. CONCLUSIONS The study successfully demonstrates that optimized mixtures of EOs can serve as effective natural antibacterial agents. The findings highlight a novel approach to enhance the applications of essential oils, suggesting their potential use in food preservation and biopharmaceutical formulations. This optimization strategy offers a promising avenue to combat antibiotic resistance and enhance food safety using natural products.
Collapse
Affiliation(s)
- Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (B.E.G.)
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (B.E.G.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Naoufal El Hachlafi
- Faculty of Medicine and Pharmacy, Ibn Zohr University, Guelmim 81000, Morocco; (N.E.H.); (M.J.)
| | - Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (B.E.G.)
| | - Mohamed Jeddi
- Faculty of Medicine and Pharmacy, Ibn Zohr University, Guelmim 81000, Morocco; (N.E.H.); (M.J.)
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (A.A.)
| | - Saad Bougrine
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.); (W.A.A.)
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.); (W.A.A.)
| | - Waleed A. Alobaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.); (W.A.A.)
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (A.A.)
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (B.E.G.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Hanae Naceiri Mrabti
- High Institute of Nursing Professions and Health Techniques, Casablanca 20250, Morocco;
- Department of Pharmacology, Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine, Pharmacy and Dentistry, Sidi Mohamed Ben Abdellah University, Fez P.O. Box 2202, Morocco
| | - Francois Mesnard
- BIOPI-BioEcoAgro UMRT 1158 INRAE, Université de Picardie Jules Verne, 80000 Amiens, France;
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (B.E.G.)
| |
Collapse
|
12
|
He CK, Hung MC, Hxu CH, Hsieh YH, Lin YS. Pitfalls in measuring solution toxicity using the level of bioluminescence inhibition in Aliivibrio fischeri. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110067. [PMID: 39510333 DOI: 10.1016/j.cbpc.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/06/2024] [Accepted: 11/02/2024] [Indexed: 11/15/2024]
Abstract
Toxic emission from industrial activity is a serious problem, particularly with regard to the quality of water. Thus, the ISO 11348-3 standard for assessing water quality has been established. This method is used to determine solution toxicity from the bioluminescence inhibition of Aliivibrio fischeri. However, the accuracy of measurements is influenced by the selection of individual reaction time points. This study explores the utility of the area under the curve (AUC) method in water quality detection and evaluates how A. fischeri responds to three toxicants, namely ethanol, acetone, and zinc sulfate, over time. The half-maximal effective concentrations of these three substances were found to be 10.13 %, 5.02 %, and 19.49 mg/L, respectively. Compared with the results from individual reaction time point assessments, the results of AUC comprehensively captured the effects of the toxicants, including time-dependent effects and hormetic effects, by capturing dynamic changes under different toxicant concentrations and reaction times. Therefore, AUC analysis mitigates the pitfalls associated with individual reaction times and provides a more accurate and reliable assessment method for water quality detection, contributing to a better understanding of the impact of toxic substances on aquatic environments.
Collapse
Affiliation(s)
- Cheng-Kun He
- Department of Chemical Engineering, National United University, Miaoli, Taiwan
| | - Ming-Chun Hung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chong-Hao Hxu
- Department of Chemical Engineering, National United University, Miaoli, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yung-Sheng Lin
- Department of Chemical Engineering, National United University, Miaoli, Taiwan.
| |
Collapse
|
13
|
Saenjum C, Thim-Uam A, Khonthun C, Oonlao P, Nuntaboon P, Surh YJ, Phromnoi K. Anthocyanins from a new hybrid sweet potato peel cultivated in Northern Thailand mitigate LPS-induced inflammation and RANKL-induced osteoporosis by regulating ROS-mediated pathways. Inflammopharmacology 2025; 33:381-399. [PMID: 39806052 PMCID: PMC11799051 DOI: 10.1007/s10787-024-01634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Maejo 341 Sweet potato (MSP) is a new purple sweet potato variety cultivated in Northern Thailand, but its health benefits are unknown. This study aimed to investigate its antioxidant, anti-inflammatory, and anti-osteoporotic activities, as well as its anthocyanin content. The peel and flesh of MSP were extracted with ethanol and water. Compared with the flesh extracts, the peel extracts presented greater antioxidant capacity and were rich in phenolics, flavonoids, and anthocyanins, namely, cyanidin-3-O-glucoside, peonidin-3-O-glucoside, pelargonidin-3-O-glucoside, cyanidin, and peonidin. The peel extracts suppressed lipopolysaccharide-induced inflammation by inhibiting the secretion of proinflammatory cytokines and enzymes, including TNF-α, IL-1β, IL-6, COX-2, and iNOS, as well as reducing nitric oxide and matrix metalloproteinase-9 secretion. The extracts inhibited the RANKL-induced NF-κB and MAPK pathways and downregulated osteoclastogenic marker expression. Under LPS and RANKL treatment, the peel extracts notably reduced reactive oxygen species production while increasing antioxidant gene expression. Furthermore, they increased osteoblast viability and slightly raise alkaline phosphatase activity. These findings suggest that MSP peel could be used as a functional food to alleviate oxidative stress and inflammation-related osteoporosis.
Collapse
Affiliation(s)
- Chalermpong Saenjum
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B. BES-CMU), Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Chakkraphong Khonthun
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Panida Oonlao
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Piyawan Nuntaboon
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Young-Joon Surh
- Research Center for Innovation in Analytical Science and Technology for Biodiversity-Based Economic and Society (I-ANALY-S-T_B. BES-CMU), Chiang Mai University, Chiang Mai, 50200, Thailand
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Kanokkarn Phromnoi
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand.
| |
Collapse
|
14
|
Sánchez-Ortiz LK, Sánchez-Quezada V, Gaytán-Martínez M, Cuellar-Nuñez ML, Loarca-Piña G. Influence in physicochemical, nutritional, and antioxidant properties by addition Moringa oleifera leaves in Avena sativa bread. Food Chem 2024; 460:140743. [PMID: 39116777 DOI: 10.1016/j.foodchem.2024.140743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Moringa oleifera leaves have high nutrient valor, physicochemical, and nutraceutical properties and can be used as ingredients to develop wheat-free enrich. The aim was to evaluate nutritional, chemical, and nutraceutical characterization, antioxidant capacity, along physicochemical parameters to develop four oat bread using yeast (PL), xanthan gum (PG), and 2.5% (M2) or 5.0% (M5) of moringa leaves. Morinaga leaves were a source of 23.19% protein, 12.43% ash, and 30.36% dietary fiber. The bread formulations increased the protein content by 25-50%, and decreased lipid in 52.14% compared with commercial bread. For antioxidant capacity, PLM5 had the highest with values of 11.97 mMTE/g (DPPH), 16.06 mMTE/g (ABTS), and 16.38 mMTE/g (FRAP). In the bread with MOLP were identified Epicatechin, rutin, and dihydroxybenzoic acid by HPLC. The bread with a better texture profile was PLM2. The results suggested that moringa leaves used as an oat bread ingredient can enhance the nutritional and nutraceutical content.
Collapse
Affiliation(s)
- L K Sánchez-Ortiz
- PROPAC, Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, Mexico
| | - V Sánchez-Quezada
- PROPAC, Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, Mexico
| | - M Gaytán-Martínez
- PROPAC, Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, Mexico
| | - M L Cuellar-Nuñez
- Facultad de Medicina, Universidad Autónoma de Querétaro, Clavel 200, Prados de la Capilla, Santiago de Querétaro, Querétaro, 76176, Mexico
| | - G Loarca-Piña
- PROPAC, Research and Graduate Program in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, Mexico..
| |
Collapse
|
15
|
Zhao L, Wang L, Wang N, Gao X, Zhang B, Zhao Y, Wang N. Cooking Alters the Metabolites of Onions and Their Ability to Protect Nerve Cells from Lead Damage. Foods 2024; 13:3707. [PMID: 39594122 PMCID: PMC11593875 DOI: 10.3390/foods13223707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Onions (Allium cepa L.) are nutritious vegetables; however, variations in processing methods can influence their chemical composition and functional properties. Raw processing and cooking are the two main food-processing methods for onions, but it is not clear what kind of changes these two methods cause. In the present study, ultrahigh-resolution liquid chromatography-mass spectrometry (UHPLC-MS) was utilized to observe the changes in onion composition during cooking and to investigate the protective effects of raw and cooked onion extracts against lead damage in vitro and at the cellular level. Many compounds were identified, including amino acids, nucleosides, flavonoids, and organosulfur compounds. Cooking causes changes in the content of numerous amino acids (e.g., DL-glutamine) in onions and increases nucleoside content (e.g., 5'-S-methyl-5'-thioadenosine, adenine). Both raw and cooked onion extracts can reduce neuronal cell damage caused by lead exposure, but cooking increased the free radical scavenging (e.g., DPPH, ABTS, hydroxyl radicals) and chelating of lead ions (up to about 25%) of the onion extracts. In conclusion, cooking can cause changes in the chemical composition of onions and increase their antioxidant and lead chelating capacity.
Collapse
Affiliation(s)
- Li Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
| | - Liping Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
| | - Nan Wang
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
| | - Bin Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
16
|
Leo CH, Ong ES. Recent advances in the combination of organic solvent-free extraction, chemical standardization, antioxidant assay, and cell culture metabolomics for functional food and its by-product. Crit Rev Food Sci Nutr 2024; 64:11919-11933. [PMID: 37574586 DOI: 10.1080/10408398.2023.2245040] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Functional foods and their by-products contain a wide range of bioactive components with an array of health benefits and were proposed to improve public health, well-being, and others. To achieve a circular economy, the processing and extraction of flavonoids, phenolic compounds, and others from functional food and agri-food wastes will require the use of environmentally friendly, sustainable, and a low-cost solution. Extraction methods that can eliminate the use of organic solvents, suitable for use in the laboratory and production of extracts will be covered. This will include subcritical water extraction (SBE), pressurized hot water extraction (PHWE), supercritical fluid extraction (SFE), and others. Based on the selected analytical methods, the determination of the marker or bioactive compounds and chemical fingerprints will provide the control measures to identify the batch-to-batch variation of the composition of the functional food products obtained. The combination of chemical standardization with antioxidant assay, such as DPPH and ABTS+ will provide further information on the quality of the extracts. Lastly, to ascertain the biological and physiological relevance of the antioxidant properties of the target sample, treatment of the antioxidant compounds or extracts was carried out using cellular models, and validated using other experimental endpoints, such as metabolomics.
Collapse
Affiliation(s)
- Chen Huei Leo
- Department of Science, Math & Technology, Singapore University of Technology & Design, Singapore, Singapore
- Center for Healthcare Education, Entrepreneurship and Research (CHEERS), Singapore University of Technology & Design, Singapore, Singapore
| | - Eng Shi Ong
- Department of Science, Math & Technology, Singapore University of Technology & Design, Singapore, Singapore
| |
Collapse
|
17
|
Aguado RJ, Saguer E, Tarrés Q, Fiol N, Delgado-Aguilar M. Antioxidant and antimicrobial emulsions with amphiphilic olive extract, nanocellulose-stabilized thyme oil and common salts for active paper-based packaging. Int J Biol Macromol 2024; 279:135110. [PMID: 39222782 DOI: 10.1016/j.ijbiomac.2024.135110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/16/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Anionic cellulose nanofibers (CNFs) were used to stabilize emulsions that combined water-soluble (and oil-soluble), strongly antioxidant extracts with a water-immiscible, notably antimicrobial essential oil. Specifically, the radical scavenging activity was primarily provided by aqueous extracts from olive fruit (Olea europaea L.), while the antimicrobial effects owed eminently to thyme oil (Thymus vulgaris L.). The resulting emulsions were highly viscous at low shear rate (4.4 Pa·s) and displayed yield stress. The addition of edible salts decreased the yield stress, the apparent viscosity and the droplet size, to the detriment of stability at ionic strengths above 50 mM. Once characterized, the antioxidant and antimicrobial emulsions were applied on packaging-grade paper. Coated paper sheets inhibited the growth of Listeria monocytogenes, a common foodborne pathogen, and acted as antioxidant emitters. In this sense, the release to food simulants A (ethanol 10 vol%), B (acetic acid 3 wt%), and C (ethanol 20 vol%) was assessed. A 24-hour exposure of 0.01 m2 of coated paper to 0.1 L of these hydrophilic simulants achieved inhibition levels of the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) in the 15-29 % range. All considered, the bioactive properties of thyme essential oil towards lipophilic food products can be complemented with the antioxidant activity of aqueous olive extracts towards hydrophilic systems, resulting in a versatile combination for active food packaging.
Collapse
Affiliation(s)
- Roberto J Aguado
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Elena Saguer
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Quim Tarrés
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Núria Fiol
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain
| | - Marc Delgado-Aguilar
- LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain.
| |
Collapse
|
18
|
Tincu R, Mihaila M, Bostan M, Istrati D, Badea N, Lacatusu I. Hybrid Albumin-Decorated Lipid-Nanocarrier-Mediated Delivery of Polyphenol-Rich Sambucus nigra L. in a Potential Multiple Antitumoural Therapy. Int J Mol Sci 2024; 25:11206. [PMID: 39456987 PMCID: PMC11508305 DOI: 10.3390/ijms252011206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The current research attempted to address the suitability of bioactive Sambucus nigra extract entrapped in albumin-decorated nanostructured lipid carriers (NLCs) as a promising "adjuvant" in improving tumour penetration for multiple antitumour therapy. The new hybrid albumin-decorated NLCs were characterised based on, e.g., the particle size, zeta electrokinetic potential, SambucusN entrapment efficiency, and fluorescence spectroscopy and tested for different formulation parameters. The antioxidant activity of NLC-SambucusN was significantly enhanced by a bovine serum albumin (BSA) polymer coating. According to the real-time cell analysis (RTCA) results, NLC-I-SambucusN-BSA behaved similarly to the chemotherapeutic drug, cisplatin, with cell viability for LoVo tumour cells of 21.81 ± 1.18%. The new albumin-NLC-SambucusN arrested cancer cells in G1 and G2 cycles and intensified the apoptosis process in both early and late phases. An advanced induction, over 50% apoptosis in LoVo colon cells, was registered for 50 μg/mL of NLC-II-SambucusN-BSA, a fourfold increase compared to that of untreated cells. RTCA and flow cytometry results showed that concentrations of the hybrid NLC-SambucusN up to 50 μg/mL do not affect the proliferation of normal HUVEC cells. This approach provides insightful information regarding the involvement of phytochemicals in future therapeutic strategies. Albumin-decorated NLCs can be considered a noteworthy strategy to be connected to antitumour therapeutic protocols.
Collapse
Affiliation(s)
- Robert Tincu
- Faculty of Chemical Engineering and Bioengineering, National University of Science and Technology Politehnica Bucharest, Polizu No 1, 011061 Bucharest, Romania; (R.T.); (D.I.); (N.B.)
- “C. D. Nenitzescu” Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No 285, 030304 Bucharest, Romania;
- Faculty of Pharmacy, Titu Maiorescu University, Bd. Gh. Sincai No. 16, 040314 Bucharest, Romania
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Mihai Bravu Street No 285, 030304 Bucharest, Romania;
- Department of Immunology, Victor Babes National Institute of Pathology, 99-101 Splaiul Independetei, 050096 Bucharest, Romania
| | - Daniela Istrati
- Faculty of Chemical Engineering and Bioengineering, National University of Science and Technology Politehnica Bucharest, Polizu No 1, 011061 Bucharest, Romania; (R.T.); (D.I.); (N.B.)
| | - Nicoleta Badea
- Faculty of Chemical Engineering and Bioengineering, National University of Science and Technology Politehnica Bucharest, Polizu No 1, 011061 Bucharest, Romania; (R.T.); (D.I.); (N.B.)
| | - Ioana Lacatusu
- Faculty of Chemical Engineering and Bioengineering, National University of Science and Technology Politehnica Bucharest, Polizu No 1, 011061 Bucharest, Romania; (R.T.); (D.I.); (N.B.)
| |
Collapse
|
19
|
Qian ZM, Wu MQ, Chen J, Huang Q, Fan DY, Li DQ. Rapid discovery of natural antioxidants in Hypericum japonicum: Dual roles of the liquid phase mobile phase as extraction and separation solvent. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1247:124322. [PMID: 39305632 DOI: 10.1016/j.jchromb.2024.124322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 11/12/2024]
Abstract
Hypericum japonicum is a traditional folk medicine with various bioactivities such as hepatoprotective, antioxidant, and anti-tumorous. The antioxidant effect of H. japonicum is one of the most prominent effects due to its responsibility for many of its activities. To clarify active natural substance, the antioxidant properties of H. japonicum were preliminarily assessed by ferric reducing-antioxidant power (FRAP), 2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and Oxygen radical absorbance capacity (ORAC), as well as superoxide dismutase (SOD). Then, a straightforward and effective method named online liquid extraction-high performance liquid chromatography combined with ABTS antioxidant assay and mass spectrometry (OLE-HPLC-ABTS/Q-TOF-MS) was developed to swiftly and directly discover the antioxidants in H. japonicum. Using mobile phase as extraction and separation reagent, coupled with online activity analysis and compounds identification by high-resolution MS, the online system enables rapid screening of natural antioxidant bioactives from complex mixture. By using it, a total of 9 compounds including flavonoids and phenolic acids characterized by retention time, precise mass, and fragmentation ions in MS/MS spectra showed antioxidant action. Finally, the antioxidant and SOD activity of main found active compounds were validated by in vitro experiment assay and molecular docking. In summary, these results suggested that H. japonicum could be considered as a potential source of natural antioxidants, and the online integrated system might become a promising candidate for the natural antioxidants discovery in the future.
Collapse
Affiliation(s)
- Zheng-Ming Qian
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou 423000, Hunan Province, PR China; Zhuhai Hengqin HEC Cordyceps Co., Ltd, Zhuhai 519031, Guangdong Province, PR China
| | - Meng-Qi Wu
- Zhuhai Hengqin HEC Cordyceps Co., Ltd, Zhuhai 519031, Guangdong Province, PR China
| | - Jing Chen
- College of Medical Imaging Laboratory and Rehabilitation, Xiangnan University, Chenzhou 423000, Hunan Province, PR China
| | - Qi Huang
- Zhuhai Hengqin HEC Cordyceps Co., Ltd, Zhuhai 519031, Guangdong Province, PR China
| | - Deng-Yun Fan
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, PR China
| | - De-Qiang Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, PR China.
| |
Collapse
|
20
|
Elbouzidi A, Taibi M, El Hachlafi N, Haddou M, Jeddi M, Baraich A, Aouraghe A, Bellaouchi R, Mothana RA, Hawwal MF, Mesnard F, Hano C, Asehraou A, Chaabane K, El Guerrouj B, Addi M. Formulation of a Three-Component Essential Oil Mixture from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis for Improved Antioxidant Activity. Pharmaceuticals (Basel) 2024; 17:1071. [PMID: 39204175 PMCID: PMC11357427 DOI: 10.3390/ph17081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
The optimization of existing natural antioxidants that are highly effective is crucial for advancements in medicine and the food industry. Due to growing concerns regarding the safety of synthetic antioxidants, researchers are increasingly focusing on natural sources, particularly essential oils (EOs). Combining EOs might enhance antioxidant activity due to increased chemical diversity. This study investigates, for the first time, the antioxidant properties of EOs from Lavandula dentata, Rosmarinus officinalis, and Myrtus communis, both individually and in combination, using the augmented-simplex design methodology. The in vitro evaluation of the antioxidant activity was performed using DPPH and ABTS radical scavenging assays. Chromatography gas-mass spectrometry (CG-MS) revealed that 1,8-cineol (37.27%) and pinocarveol (12.67%) are the primary components of L. dentata; verbenone (16.90%), camphor (15.00%), and camphene (11.03%) are predominant in R. officinalis; while cineol (43.32%) is the main component of M. communis. The EOs showed varying scavenging activities against ABTS and DPPH radicals, with DPPH assay values ranging from 194.10 ± 3.01 to 541.19 ± 3.72 µg/mL and ABTS assay values ranging from 134.07 ± 1.70 to 663.42 ± 2.99 µg/mL. These activities were enhanced when the EOs were combined. The optimal antioxidant blend for DPPHIC50 consisted of 20% L. dentata, 50% R. officinalis, and 30% M. communis. For the highest ABTS radical scavenging activity, the best combination was 18% L. dentata, 43% R. officinalis, and 40% M. communis. These results highlight the potential of EO combinations as new natural formulations for use in cosmeceutical, food, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
| | - Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Naoufal El Hachlafi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez P.O. Box 2202, Morocco; (N.E.H.); (M.J.)
| | - Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
| | - Mohamed Jeddi
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez P.O. Box 2202, Morocco; (N.E.H.); (M.J.)
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (R.B.); (A.A.)
| | - Aya Aouraghe
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (R.B.); (A.A.)
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.)
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (R.A.M.); (M.F.H.)
| | - François Mesnard
- UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University of Picardie Jules Verne, 80000 Amiens, France;
| | - Christophe Hano
- Institut de Chimie Organique et Analytique, Université d’Orléans-CNRS, UMR 7311 BP 6759, CEDEX 2, 45067 Orléans, France;
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda 60000, Morocco; (A.B.); (R.B.); (A.A.)
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
- Centre de l’Oriental des Sciences et Technologies de l’Eau et de l’Environnement (COSTEE), Université Mohammed Premier, Oujda 60000, Morocco;
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda 60000, Morocco; (M.T.); (M.H.); (K.C.); (B.E.G.)
| |
Collapse
|
21
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Lee SJ, Heo JD, Kim HW, Seong JK, Kim DI, Park KI, Kim GS. Binding affinity screening of polyphenolic compounds in Stachys affinis extract (SAE) for their potential antioxidant and anti-inflammatory effects. Sci Rep 2024; 14:18095. [PMID: 39103443 PMCID: PMC11300793 DOI: 10.1038/s41598-024-68880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
Free radical is a marker in various inflammatory diseases. The antioxidant effect protects us from this damage, which also plays an essential role in preventing inflammation. Inflammation protects the body from biological stimuli, and pro-inflammatory mediators are negatively affected in the immune system. Inflammation caused by LPS is an endotoxin found in the outer membrane of Gram-negative bacteria, which induces immune cells to produce inflammatory cytokines such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase. Based on this, the antioxidant and anti-inflammatory effects of plant extracts were investigated. First, the main phenolic compounds for the five peaks obtained from Stachys affinis extract (SAE) were identified. The antioxidant effect of each phenolic compound was confirmed through HPLC analysis before and after the competitive binding reaction between DPPH and the extract. Afterward, the anti-inflammatory effect of each phenolic compound was confirmed through competitive binding between COX2 and the extract in HPLC analysis. Lastly, the anti-inflammatory effect of SAE was confirmed through in vitro experiments and also confirmed in terms of structural binding through molecular docking. This study confirmed that phenolic compounds in SAE extract have potential antioxidant and anti-inflammatory effects, and may provide information for primary screening of medicinal plants.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Se Hyo Jeong
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Yeong Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Pritam Bhangwan Bhosale
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sang Joon Lee
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju, 52834, Korea
| | - Jeong Doo Heo
- Gyeongnam Department of Environment Toxicology and Chemistry, Biological Resources Research Group, Korea Institute of Toxicology, 17 Jegok-gil, Jinju, 52834, Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience and Intergrated Biotechnology, Jinju, 52725, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Il Kim
- Namhae Garlic Research Institute, 2465-8 Namhaedaero, Namhae, Gyeongsangnam-do, 52430, Republic of Korea
| | - Kwang Il Park
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
22
|
Monroy-Cárdenas M, Almarza C, Valenzuela-Hormazábal P, Ramírez D, Urra FA, Martínez-Cifuentes M, Araya-Maturana R. Identification of Antioxidant Methyl Derivatives of Ortho-Carbonyl Hydroquinones That Reduce Caco-2 Cell Energetic Metabolism and Alpha-Glucosidase Activity. Int J Mol Sci 2024; 25:8334. [PMID: 39125904 PMCID: PMC11313435 DOI: 10.3390/ijms25158334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
α-glucosidase, a pharmacological target for type 2 diabetes mellitus (T2DM), is present in the intestinal brush border membrane and catalyzes the hydrolysis of sugar linkages during carbohydrate digestion. Since α-glucosidase inhibitors (AGIs) modulate intestinal metabolism, they may influence oxidative stress and glycolysis inhibition, potentially addressing intestinal dysfunction associated with T2DM. Herein, we report on a study of an ortho-carbonyl substituted hydroquinone series, whose members differ only in the number and position of methyl groups on a common scaffold, on radical-scavenging activities (ORAC assay) and correlate them with some parameters obtained by density functional theory (DFT) analysis. These compounds' effect on enzymatic activity, their molecular modeling on α-glucosidase, and their impact on the mitochondrial respiration and glycolysis of the intestinal Caco-2 cell line were evaluated. Three groups of compounds, according their effects on the Caco-2 cells metabolism, were characterized: group A (compounds 2, 3, 5, 8, 9, and 10) reduces the glycolysis, group B (compounds 1 and 6) reduces the basal mitochondrial oxygen consumption rate (OCR) and increases the extracellular acidification rate (ECAR), suggesting that it induces a metabolic remodeling toward glycolysis, and group C (compounds 4 and 7) increases the glycolysis lacking effect on OCR. Compounds 5 and 10 were more potent as α-glucosidase inhibitors (AGIs) than acarbose, a well-known AGI with clinical use. Moreover, compound 5 was an OCR/ECAR inhibitor, and compound 10 was a dual agent, increasing the proton leak-driven OCR and inhibiting the maximal electron transport flux. Additionally, menadione-induced ROS production was prevented by compound 5 in Caco-2 cells. These results reveal that slight structural variations in a hydroquinone scaffold led to diverse antioxidant capability, α-glucosidase inhibition, and the regulation of mitochondrial bioenergetics in Caco-2 cells, which may be useful in the design of new drugs for T2DM and metabolic syndrome.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
| | - Cristopher Almarza
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Paulina Valenzuela-Hormazábal
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - David Ramírez
- Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile; (P.V.-H.); (D.R.)
| | - Félix A. Urra
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Network for Snake Venom Research and Drug Discovery, Av. Independencia 1027, Santiago 7810000, Chile
- Metabolic Plasticity and Bioenergetics Laboratory, Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
| | - Maximiliano Martínez-Cifuentes
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | - Ramiro Araya-Maturana
- MIBI—Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile; (C.A.); (F.A.U.)
- Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
23
|
Bulgaru V, Gurev A, Baerle A, Dragancea V, Balan G, Cojocari D, Sturza R, Soran ML, Ghendov-Mosanu A. Phytochemical, Antimicrobial, and Antioxidant Activity of Different Extracts from Frozen, Freeze-Dried, and Oven-Dried Jostaberries Grown in Moldova. Antioxidants (Basel) 2024; 13:890. [PMID: 39199136 PMCID: PMC11351914 DOI: 10.3390/antiox13080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
In this paper, the qualitative and quantitative profile is evaluated of the bioactive compounds, antioxidant activity (AA), microbiostatic properties, as well as the color parameters of jostaberry extracts, obtained from frozen (FJ), freeze-dried (FDJ), and oven-dried berries (DJ). The optimal extraction conditions by ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) were selected after determination of the total polyphenol content (TPC), total flavonoid content (TFC), total antocyanin content (TA), AA by 2,2-diphenyl-1-picrylhydrazyl-hydrate (DPPH), and the free radical cation 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonates (ABTS). Non-conventional extraction methods are less destructive to anthocyanins, while drying the berries reduced TA, regardless of the extraction method. The oven-drying process reduced the concentration of TA in DJ extracts by 99.4% and of ascorbic acid by 92.42% compared to FJ. AA was influenced by the jostaberry pretreatment methods. The DPPH and ABTS tests recorded values (mg Trolox equivalent/g dry weight) between 17.60 and 35.26 and 35.64 and 109.17 for FJ extracts, between 7.50 and 7.96 and 45.73 and 82.22 for FDJ, as well as between 6.31 and 7.40 and 34.04 and 52.20 for DJ, respectively. The jostaberry pretreatment produced significant changes in all color parameters. Mutual information analysis, applied to determine the influence of ultrasound and microwave durations on TPC, TFC, TA, AA, pH, and color parameters in jostaberry extracts, showed the greatest influence on TA (0.367 bits) and TFC (0.329 bits). The DPPH and ABTS inhibition capacity of all FJ' extracts had higher values and varied more strongly, depending on pH, heat treatment, and storage time, compared to the AA values of FDJ' and DJ' extracts. A significant antimicrobial effect was observed on all bacterial strains studied for FJP. FDJP was more active on Bacillus cereus, Staphylococcus aureus, and Escherichia coli. DJP was more active on Salmonella Abony and Pseudomonas aeruginosa. The antifungal effect of DJP was stronger compared to FDJP. Jostaberry extracts obtained under different conditions can be used in food production, offering a wide spectrum of red hues.
Collapse
Affiliation(s)
- Viorica Bulgaru
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (V.B.); (A.G.); (A.B.); (V.D.); (R.S.); (A.G.-M.)
| | - Angela Gurev
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (V.B.); (A.G.); (A.B.); (V.D.); (R.S.); (A.G.-M.)
| | - Alexei Baerle
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (V.B.); (A.G.); (A.B.); (V.D.); (R.S.); (A.G.-M.)
| | - Veronica Dragancea
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (V.B.); (A.G.); (A.B.); (V.D.); (R.S.); (A.G.-M.)
| | - Greta Balan
- Department of Preventive Medicine, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Stefan cel Mare Blvd., MD-2004 Chisinau, Moldova; (G.B.); (D.C.)
| | - Daniela Cojocari
- Department of Preventive Medicine, “Nicolae Testemitanu” State University of Medicine and Pharmacy, 165 Stefan cel Mare Blvd., MD-2004 Chisinau, Moldova; (G.B.); (D.C.)
| | - Rodica Sturza
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (V.B.); (A.G.); (A.B.); (V.D.); (R.S.); (A.G.-M.)
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Aliona Ghendov-Mosanu
- Faculty of Food Technology, Technical University of Moldova, 9/9 Studentilor St., MD-2045 Chisinau, Moldova; (V.B.); (A.G.); (A.B.); (V.D.); (R.S.); (A.G.-M.)
| |
Collapse
|
24
|
Li R, Tang J, Li J, Wu B, Tang J, Kan H, Zhao P, Zhang Y, Wang W, Liu Y. Bioactivity-Guided Isolation of Secondary Metabolites with Antioxidant and Antimicrobial Activities from Camellia fascicularis. Foods 2024; 13:2266. [PMID: 39063349 PMCID: PMC11276353 DOI: 10.3390/foods13142266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Camellia fascicularis has important ornamental, medicinal, and food values, which also have tremendous potential for exploiting bioactivities. We performed the bioactivity-guided (antioxidant and antimicrobial) screening of eight fractions obtained from the ethyl acetate phase of C. fascicularis. The antioxidant activity was measured by DPPH, ABTS, and FRAP, and the antibacterial activity was measured by the minimum inhibitory concentration (MIC) of Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. The results of bioactivity-guided isolation indicated that the major antioxidant compounds in the ethanolic extracts of C. fascicularis may be present in fractions (Fr.) (A-G, obtained after silica gel column chromatography). Fr. (D-I, obtained after silica gel column chromatography) is a fraction of C. fascicularis with antimicrobial activity. The structures of compounds were determined by spectral analysis and nuclear magnetic resonance (NMR) combined with the available literature on secondary metabolites of C. fascicularis leaves. In this study, 17 compounds were identified, including four phenolics (1, 3-4, and 14), a phenylpropane (2), five terpenoids (5-7, 12, and 15), four flavonoids and flavonoid glycosides (8-10 and 16), and two lignins (13 and 17). Compounds 4-7, 13-15, and 17 were isolated from the genus Camellia for first time. The remaining compounds were also isolated from C. fascicularis for first time. The evaluation of antioxidant and antimicrobial activities revealed that compounds 1, 3, 9, 11, and 17 exhibited higher antioxidant activity than the positive control drug (ascorbic acid), and compounds 4, 8, 10, and 13 showed similar activity to ascorbic acid. The other compounds had weaker or no significant antioxidant activities. The MIC of antibacterial activity for compounds 4, 7, and 11-13 against P. aeruginosa was comparable to that of the positive control drug tetracycline at 125 µg/mL, and other secondary metabolites inhibited E. coli and S. aureus at 250-500 µg/mL. This is also the first report of antioxidant and antimicrobial activities of compounds 5-7, 13-15, and 17. The results of the study enriched the variety of secondary metabolites of C. fascicularis and laid the foundation for further research on the pharmacological efficacy and biological activity of this plant.
Collapse
Affiliation(s)
- Ruonan Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Jiandong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Jingjing Li
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Boxiao Wu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Junrong Tang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Huan Kan
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Ping Zhao
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Yingjun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650224, China;
| | - Weihua Wang
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| | - Yun Liu
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China; (R.L.); (J.T.); (J.L.); (B.W.); (J.T.); (H.K.); (P.Z.); (W.W.)
| |
Collapse
|
25
|
Araceli Guzmán-Ortiz F, Baruchs Muñoz-Llandes C, Martínez-Villaluenga C. Time maters: Exploring the dynamics of bioactive compounds content, bioaccessibility and antioxidant activity during Lupinus angustifolius germination. Food Res Int 2024; 187:114426. [PMID: 38763676 DOI: 10.1016/j.foodres.2024.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/21/2024]
Abstract
Germination is a process that enhances the content of health-promoting secondary metabolites. However, the bioaccessibility of these compounds depends on their stability and solubility throughout the gastrointestinal tract. The study aimed to explore how germination time influences the content and bioaccessibility of γ-aminobutyric acid and polyphenols and antioxidant capacity of lupin (Lupinus angustifolius L.) sprouts during simulated gastrointestinal digestion. Gamma-aminobutyric acid showed a decrease following gastrointestinal digestion (GID) whereas phenolic acids and flavonoids exhibited bioaccessibilities of up to 82.56 and 114.20%, respectively. Although the digestion process affected the profile of phenolic acids and flavonoids, certain isoflavonoids identified in 7-day sprouts (G7) showed resistance to GID. Germination not only favored antioxidant activity but also resulted in germinated samples exhibiting greater antioxidant properties than ungerminated counter parts after GID. Intestinal digests from G7 did not show cytotoxicity in RAW 264.7 macrophages, and notably, they showed an outstanding ability to inhibit the production of reactive oxygen species. This suggests potential benefit in mitigating oxidative stress. These findings contribute to understand the dynamic interplay between bioprocessing and digestion in modulating the bioaccessibility of bioactive compounds in lupin, thereby impacting health.
Collapse
Affiliation(s)
- Fabiola Araceli Guzmán-Ortiz
- CONAHCYT-Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/n, Mineral de la Reforma, 42184 Hidalgo, Mexico
| | - Ciro Baruchs Muñoz-Llandes
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 s/nm, Mineral de la Reforma, 42184 Hidalgo, Mexico
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 6, 28040 Madrid, Spain.
| |
Collapse
|
26
|
Lianza M, Antognoni F. Green Method Comparison and Optimization of Anthocyanin Recovery from "Sangiovese" Grape Pomace: A Critical Evaluation of the Design of Experiments Approach. Molecules 2024; 29:2679. [PMID: 38893553 PMCID: PMC11173428 DOI: 10.3390/molecules29112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Grape pomace is the main by-product obtained from wine production that is still enriched in bioactive compounds. Within a framework of waste/by-product reuse through a sustainable approach, various green methods were utilized in this work to recover anthocyanins from the pomace resulting from "Sangiovese" grape vinification. Ultrasound- and Microwave-Assisted Extractions (UAE and MAE) were coupled with the use of green solvents, such as acidified water, an ethanol/water mixture, and Natural Deep Eutectic Solvents (NaDES), and their efficacy was compared with that of a conventional method based on a methanol/acidified water mixture. The Total Anthocyanin Index ranged from 36.9 to 75.2 mg/g DW for UAE, and from 54.4 to 99.6 mg/g DW for MAE, while resulting in 47.1 mg/g DW for conventional extraction. A Design of Experiments (DoE) approach was applied to MAE, the most efficient technique. Temperature, time, and the solid-to-liquid ratio were set as X variables, while malvidin-3-O-glucoside content and antioxidant activity were used as response variables, measured by High-Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay, respectively. The correlation between temperature and time and the antioxidant activity of the extract was positive, while it was found to be negative when considering malvidin-3-O-glucoside concentration as a response variable. Thus, the optimal conditions in temperature, time and solid-to-liquid ratio were different depending on the chosen variable. The results underline the importance of selecting an accurate response when using the response surface methodology approach.
Collapse
Affiliation(s)
| | - Fabiana Antognoni
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
27
|
Nguyen AV, Yaghoobi M, Zhang S, Li P, Li Q, Dogan B, Ahnrud GP, Flock G, Marek P, Simpson KW, Abbaspourrad A. Adaptive Laboratory Evolution of Probiotics toward Oxidative Stress Using a Microfluidic-Based Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306974. [PMID: 38247174 DOI: 10.1002/smll.202306974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/28/2023] [Indexed: 01/23/2024]
Abstract
Adaptive laboratory evolution (ALE) can be used to make bacteria less susceptible to oxidative stress. An alternative to large batch scale ALE cultures is to use microfluidic platforms, which are often more economical and more efficient. Microfluidic ALE platforms have shown promise, but many have suffered from subpar cell passaging mechanisms and poor spatial definition. A new approach is presented using a microfluidic Evolution on a Chip (EVoc) design which progressively drives microbial cells from areas of lower H2O2 concentration to areas of higher concentration. Prolonged exposure, up to 72 h, revealed the survival of adaptive strains of Lacticaseibacillus rhamnosus GG, a beneficial probiotic often included in food products. After performing ALE on this microfluidic platform, the bacteria persisted under high H2O2 concentrations in repeated trials. After two progressive exposures, the ability of L. rhamnosus to grow in the presence of H2O2 increased from 1 mm H2O2 after a lag time of 31 h to 1 mm after 21 h, 2 mm after 28 h, and 3 mm after 42 h. The adaptive strains have different morphology, and gene expression compared to wild type, and genome sequencing revealed a potentially meaningful single nucleotide mutation in the protein omega-amidase.
Collapse
Affiliation(s)
- Ann V Nguyen
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Mohammad Yaghoobi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Shiying Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, NY, 14853, USA
| | - Peilong Li
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Qike Li
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Belgin Dogan
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, NY, 14853, USA
| | - Gianna P Ahnrud
- DEVCOM Soldier Center, Soldier Sustainment Directorate, Combat Feeding Division, Food Protection & Innovative Packaging Team, Natick, MA, 01760, USA
| | - Genevieve Flock
- DEVCOM Soldier Center, Soldier Sustainment Directorate, Combat Feeding Division, Food Protection & Innovative Packaging Team, Natick, MA, 01760, USA
| | - Patrick Marek
- DEVCOM Soldier Center, Soldier Sustainment Directorate, Combat Feeding Division, Food Protection & Innovative Packaging Team, Natick, MA, 01760, USA
| | - Kenneth W Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 602 Tower Rd., Ithaca, NY, 14853, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
28
|
Kaloper S, Plohl O, Smole Možina S, Vesel A, Šimat V, Fras Zemljič L. Exploring chitosan-plant extract bilayer coatings: Advancements in active food packaging via polypropylene modification. Int J Biol Macromol 2024; 270:132308. [PMID: 38740163 DOI: 10.1016/j.ijbiomac.2024.132308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
UV-ozone activated polypropylene (PP) food films were subjected to a novel bilayer coating process involving primary or quaternary chitosan (CH/QCH) as the first layer and natural extracts from juniper needles (Juniperus oxycedrus; JUN) or blackberry leaves (Rubus fruticosus; BBL) as the second layer. This innovative approach aims to redefine active packaging (AP) development. Through a detailed analysis by surface characterization and bioactivity assessments (i.e., antioxidant and antimicrobial functionalities), we evaluated different coating combinations. Furthermore, we investigated the stability and barrier characteristics inherent in these coatings. The confirmed deposition, coupled with a comprehensive characterization of their composition and morphology, underscored the efficacy of the coatings. Our investigation included wettability assessment via contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), which revealed substantial enhancements in surface concentrations of elements and functional groups of CH, QCH, JUN, and BBL. Scanning electron microscopy (SEM) unveiled the coatings' heterogeneity, while time-of-flight secondary ion mass spectrometry (ToF-SIMS) and CA profiling showed moderately compact bilayers on PP, providing active species on the hydrophilic surface, respectively. The coatings significantly reduced the oxygen permeability. Additionally, single-layer depositions of CH and QCH remained below the overall migration limit (OML). Remarkably, the coatings exhibited robust antioxidative properties due to plant extracts and exceptional antimicrobial activity against S. aureus, attributed to QCH. These findings underscore the pivotal role of film surface properties in governing bioactive characteristics and offer a promising pathway for enhancing food packaging functionality.
Collapse
Affiliation(s)
- Saša Kaloper
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Olivija Plohl
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Sonja Smole Možina
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia.
| | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Teslova ulica 30, 1000 Ljubljana, Slovenia.
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia.
| | - Lidija Fras Zemljič
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
29
|
Ouamnina A, Alahyane A, Elateri I, Abderrazik M. Phenolic composition, antioxidant capacity, and antiglycation potential of select Moroccan date varieties: promising sources for functional food development. EURO-MEDITERRANEAN JOURNAL FOR ENVIRONMENTAL INTEGRATION 2024; 9:745-760. [DOI: 10.1007/s41207-024-00473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/22/2024] [Indexed: 01/03/2025]
|
30
|
Nemr OT, Abdel-wahab MS, Hamza ZS, Ahmed SA, El-Bassuony AA, Abdel-Gawad OF, Mohamed HS. Investigating the Anticancer and Antioxidant Potentials of a Polymer-Grafted Sodium Alginate Composite Embedded with CuO and TiO2 Nanoparticles. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:2713-2728. [DOI: 10.1007/s10924-024-03255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 01/04/2025]
Abstract
AbstractIn this study, we conducted the synthesis of a composite material by grafting an acrylonitrile-co-styrene (AN-co-St) polymer into sodium alginate and incorporating CuO (copper oxide) and TiO2 (titanium dioxide) nanoparticles. The primary objective was to investigate the potential anticancer and antioxidant activities of the composite material. First, CuO and TiO2 nanoparticles were synthesized and characterized for their size, morphology, and surface properties. Subsequently, these nanoparticles were integrated into the sodium alginate matrix, which had been grafted with the AN-co-St polymer, resulting in the formation of the composite material. To confirm successful nanoparticle incorporation and assess the structural integrity of the composite, various techniques such as X-ray diffraction analysis (XRD), scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were employed. The composite material’s anticancer and antioxidant activities were then evaluated. In vitro cell viability assays using the HepG-2 cell line were performed to assess potential cytotoxic effects, while antioxidant (DPPH) assays were conducted to determine the composite’s ability to scavenge free radicals and protect against oxidative stress. Preliminary results indicate that the composite material demonstrated promising anticancer and antioxidant activities. The presence of CuO and TiO2 nanoparticles within the composite contributed to these effects, as these nanoparticles are known to possess anticancer and antioxidant properties. Furthermore, the grafting of the AN-co-St polymer into sodium alginate enhanced the overall performance and stability of the composite material.
Collapse
|
31
|
Abstract
Berries are highly regarded as flavorful and healthy fruits that may prevent or delay some chronic diseases attributed to oxidative stress and inflammation. Berries are low in calories and harbor diverse bioactive phytochemicals, antioxidants, dietary fibers, and vitamins. This review delves into the main characteristics of fresh berries and berry products as foods and the technologies associated with their production. The main effects of processing operations and related variables on bioactive components and antioxidants are described. This review critically discusses why some health claims based on in vitro antioxidant data and clinical studies and intervention trials are difficult to assess. The review suggests that the beneficial health effects of berries are derived from a multifactorial combination of complex mixtures of abundant phenolic components, antioxidants, and their metabolites acting synergistically or additively with other nutrients like fibers and vitamins and possibly by modulating the gut microbiota.
Collapse
Affiliation(s)
- José Miguel Aguilera
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile;
| |
Collapse
|
32
|
Salvador-Reyes R, Teresa Pedrosa Silva Clerici M, Martínez-Villaluenga C. Enhancing the nutritional and bioactive benefits of faba bean flour by combining preprocessing and thermoplastic extrusion: A comprehensive study on digestion-resistant peptides. Food Res Int 2024; 183:114231. [PMID: 38760148 DOI: 10.1016/j.foodres.2024.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 05/19/2024]
Abstract
This research assessed how three preprocessing techniques [soaking (S), soaking and reconstitution (SR), and soaking and dehulling (SD)] impact the protein digestibility and bioactivity of faba bean flours when combined with thermoplastic extrusion. Samples were compared against a control (C) of extruded faba bean flour without preprocessing. Applying preprocessing techniques followed by extrusion diminished antinutrient levels while enhancing protein hydrolysis and in vitro bioactivity in higher extent compared to C. Specifically, SD combined with extrusion was the most effective, achieving an 80% rate of protein hydrolysis and uniquely promoting the release of gastric digestion-resistant proteins (50-70 kDa). It also resulted in the highest release of small peptides (<3kDa, 22.51%) and free amino acids (15.50%) during intestinal digestion. Moreover, while all preprocessing techniques increased antioxidant (ABTS radical-scavenging), antidiabetic, and anti-hypertensive activities, SD extruded flour displayed the highest levels of dipeptidyl peptidase inhibition (DPP-IVi, IC50=13.20 µg/mL), pancreatic α-amylase inhibition (IC50=8.59 mg/mL), and angiotensin I-converting enzyme inhibition (ACEi, IC50=1.71 mg protein/mL). As a result, it was selected for further peptide and in silico bioactive analysis. A total of 24 bioactive peptides were identified in intestinal digests from SD extruded flour, all with potential DPP-IVi and ACEi activities, and six were also predicted as antioxidant peptides. VIPAGYPVAIK and GLTETWNPNHPEL were highlighted as resistant bioactive peptides with the highest antidiabetic and antioxidant potential. Our findings demonstrated that combining preprocessing (particularly SD) and thermoplastic extrusion enhances protein digestibility in faba beans and promotes the release of beneficial bioactive peptides in the intestine.
Collapse
Affiliation(s)
- Rebeca Salvador-Reyes
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil; Facultad de Ingeniería, Universidad Tecnológica del Perú, Lima, Peru.
| | - Maria Teresa Pedrosa Silva Clerici
- Departamento de Ciência de Alimentos e Nutrição, Faculdade de Engenharia, Universidade Estadual de Campinas (UNICAMP), São Paulo, Brazil
| | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology, and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 6, 28040 Madrid, Spain.
| |
Collapse
|
33
|
Kang BK, Yu JC, Shin WS. Physical Stability and Antioxidant Ability of a Sustainable Oil-in-Water Emulsion Containing Perilla Skin Extract and Upcycled Aquasoya Powder. Foods 2024; 13:1063. [PMID: 38611367 PMCID: PMC11011918 DOI: 10.3390/foods13071063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
In response to environmental issues, upcycling has become a growing trend in the food industry. Aquasoya is a promising method to upcycle by-product from soybean processing due to its high protein contents and excellent emulsifying ability. In the present research, Aquasoya powder was used an emulsifier to incorporate the antioxidant compounds from perilla skin extract (PSE), namely rosmarinic acid, into oil-in-water (O/W) emulsion system and its physochemical stability was assessed. As a result, droplet size of the emulsion was smaller in PSE-incorporated emulsion (PO, 350.57 ± 9.60 b nm) than the emulsion without PSE (PX, 1045.37 ± 142.63 a nm). Centrifugal photosedimentometry analysis also revealed that the physical stability was significantly improved in PO, and the stability was maintained over 30 d of storage. Furthermore, as PO had a higher ABTS radical scavenging ability and showed slower initial lipid oxidation, it was concluded that PO has a higher antioxidant ability than PX. Conclusively, Aquasoya can be considered as an emulsifier in O/W emulsion with PSE because it can effectively integrate and stabilize the antioxidant substance derived from perilla skin.
Collapse
Affiliation(s)
| | | | - Weon-Sun Shin
- Department of Food and Nutrition, College of Human Ecology, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 04763, Republic of Korea; (B.-K.K.); (J.-C.Y.)
| |
Collapse
|
34
|
Siripongvutikorn S, Pumethakul K, Yupanqui CT, Seechamnanturakit V, Detarun P, Utaipan T, Sirinupong N, Chansuwan W, Wittaya T, Samakradhamrongthai RS. Phytochemical Profiling and Antioxidant Activities of the Most Favored Ready-to-Use Thai Curries, Pad-Ka-Proa (Spicy Basil Leaves) and Massaman. Foods 2024; 13:582. [PMID: 38397559 PMCID: PMC10887624 DOI: 10.3390/foods13040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Food is one of the factors with the highest impact on human health. Today, attention is paid not only to food properties such as energy provision and palatability but also to functional aspects including phytochemical, antioxidant properties, etc. Massaman and spicy basil leaf curries are famous Thai food dishes with a good harmony of flavor and taste, derived from multiple herbs and spices, including galangal rhizomes, chili pods, garlic bulbs, peppers, shallots, and coriander seeds, that provide an array of health benefits. The characterization of phytochemicals detected by LC-ESI-QTOF-MS/MS identified 99 components (Masaman) and 62 components (spicy basil leaf curry) such as quininic acid, hydroxycinnamic acid, luteolin, kaempferol, catechin, eugenol, betulinic acid, and gingerol. The cynaroside and luteolin-7-O-glucoside found in spicy basil leaf curry play a key role in antioxidant activities and were found at a significantly higher concentration than in Massaman curry. Phenolic and flavonoid compounds generally exhibit a bitter and astringent taste, but all the panelists scored both curries higher than 7 out of 9, confirming their acceptable flavor. Results suggest that the Massaman and spicy basil leaves contain various phytochemicals at different levels and may be further used as functional ingredients and nutraceutical products.
Collapse
Affiliation(s)
- Sunisa Siripongvutikorn
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Kanyamanee Pumethakul
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Chutha Takahashi Yupanqui
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Vatcharee Seechamnanturakit
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Preeyabhorn Detarun
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Tanyarath Utaipan
- Department of Science, Faculty of Science and Technology, Pattani Campus, Prince of Songkla University, Muang, Rusamilae 94000, Pattani, Thailand;
| | - Nualpun Sirinupong
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Worrapanit Chansuwan
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Thawien Wittaya
- Center of Excellence in Bio-Based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | | |
Collapse
|
35
|
Wang Y, Hernández-Alvarez AJ, Goycoolea FM, Martínez-Villaluenga C. A comparative study of the digestion behavior and functionality of protein from chia ( Salvia hispanica L.) ingredients and protein fractions. Curr Res Food Sci 2024; 8:100684. [PMID: 38323027 PMCID: PMC10845256 DOI: 10.1016/j.crfs.2024.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Protein derived from chia (Salvia hispanica L.), characterized by a balanced amino acid composition, represents a potentially healthier and environmentally friendly alternative poised for innovation within the plant-based food sector. It was hypothesized that the growing location of chia seeds and processing techniques used might influence protein digestion patterns, which in turn could affect the biological functions of the digestion products. To examine this hypothesis, we assessed the gastrointestinal fate of degummed-defatted flour (DDF), protein concentrate (PC), and isolated albumin (Alb) and globulin (Glo) fractions. Furthermore, we compared the antioxidant and anti-inflammatory activities of the resulting digesta by means of in vitro and cellular assays. Post-gastrointestinal digestion, the PC exhibited elevated levels of soluble protein (7.6 and 6.3 % for Mexican and British PC, respectively) and peptides (24.8 and 27.9 %, respectively) of larger molecular sizes compared to DDF, Alb, and Glo. This can be attributed to differences in the extraction/fractionation processes. Leucine was found to be the most prevalent amino acids in all chia digesta. Such variations in the digestive outcomes of chia protein components significantly influenced the bioactivity of the intestinal digestates. During gastrointestinal transit, British Glo exhibited the best reactive oxygen species (ROS) inhibition activity in oxidative-stressed RAW264.7 macrophages, while Mexican digesta outperformed British samples in terms of ROS inhibition within the oxidative-stressed Caco-2 cells. Additionally, both Mexican and British Alb showed effectively anti-inflammatory potential, with keratinocyte chemoattractant (KC) inhibition rate of 82 and 91 %, respectively. Additionally, Mexican PC and Alb generally demonstrated an enhanced capacity to mitigate oxidative stress and inflammatory conditions in vitro. These findings highlight the substantial potential of chia seeds as functional food ingredients, resonating with the shifting preferences of health-conscious consumers.
Collapse
Affiliation(s)
- Yan Wang
- School of Food Science & Nutrition, University of Leeds, LS2 9JT, Leeds, UK
| | | | | | - Cristina Martínez-Villaluenga
- Department of Technological Processes and Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 6, 28040, Madrid, Spain
| |
Collapse
|
36
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Timokhina EN, Serkov IV, Proshin AN, Soldatova YV, Poletaeva DA, Faingold II, Mumyatova VA, Terentiev AA, Radchenko EV, Palyulin VA, Bachurin SO, Richardson RJ. Combining Experimental and Computational Methods to Produce Conjugates of Anticholinesterase and Antioxidant Pharmacophores with Linker Chemistries Affecting Biological Activities Related to Treatment of Alzheimer's Disease. Molecules 2024; 29:321. [PMID: 38257233 PMCID: PMC10820264 DOI: 10.3390/molecules29020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Effective therapeutics for Alzheimer's disease (AD) are in great demand worldwide. In our previous work, we responded to this need by synthesizing novel drug candidates consisting of 4-amino-2,3-polymethylenequinolines conjugated with butylated hydroxytoluene via fixed-length alkylimine or alkylamine linkers (spacers) and studying their bioactivities pertaining to AD treatment. Here, we report significant extensions of these studies, including the use of variable-length spacers and more detailed biological characterizations. Conjugates were potent inhibitors of acetylcholinesterase (AChE, the most active was 17d IC50 15.1 ± 0.2 nM) and butyrylcholinesterase (BChE, the most active was 18d: IC50 5.96 ± 0.58 nM), with weak inhibition of off-target carboxylesterase. Conjugates with alkylamine spacers were more effective cholinesterase inhibitors than alkylimine analogs. Optimal inhibition for AChE was exhibited by cyclohexaquinoline and for BChE by cycloheptaquinoline. Increasing spacer length elevated the potency against both cholinesterases. Structure-activity relationships agreed with docking results. Mixed-type reversible AChE inhibition, dual docking to catalytic and peripheral anionic sites, and propidium iodide displacement suggested the potential of hybrids to block AChE-induced β-amyloid (Aβ) aggregation. Hybrids also exhibited the inhibition of Aβ self-aggregation in the thioflavin test; those with a hexaquinoline ring and C8 spacer were the most active. Conjugates demonstrated high antioxidant activity in ABTS and FRAP assays as well as the inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Quantum-chemical calculations explained antioxidant results. Computed ADMET profiles indicated favorable blood-brain barrier permeability, suggesting the CNS activity potential. Thus, the conjugates could be considered promising multifunctional agents for the potential treatment of AD.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena N. Timokhina
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Yuliya V. Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Darya A. Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Irina I. Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Viktoriya A. Mumyatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Alexey A. Terentiev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Wang Y, Li L, Hu J. Development of biobased multifunctional films incorporated with essential oils@polydopamine nanocapsules for food preservation applications. Int J Biol Macromol 2023; 253:127161. [PMID: 37778593 DOI: 10.1016/j.ijbiomac.2023.127161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
A novel multifunctional soy protein isolate-carboxymethyl cellulose (SPI-CMC) based nanocomposite film was successfully prepared by introducing the polydopamine encapsulated essential oils (EOs@PDA) nanocapsules for food packaging. The EOs@PDA nanocapsules possessed smooth spherical morphology with good dispersion, and the particle size was about 283 nm. The influence of EOs@PDA nanocapsules on the physical, chemical and biological properties of EOs@PDA/SPI-CMC nanocomposite film was investigated. The EOs@PDA nanocapsules were crosslinked with SPI-CMC matrix and distributed uniformly in the matrix. The nanocomposite film with 1 wt% nanocapsules (EP/S-C) also showed excellent antioxidant activity (66.6 ± 0.3 % on DPPH and 98.6 ± 0.1 % on ABTS), superior UV-blocking properties (100 %), advanced antibacterial ability against E. coli and S. aureus, favorable biodegradability (>90 %) and relatively low In vitro cytotoxicity. Also, the EP/S-C nanocomposite film displayed potential to extend the shelf life of fresh cut apple slices (>24 h), perishable cherry tomatoes and blueberries (>6 days). The results suggested that the EOs@PDA/SPI-CMC nanocomposite film had a great possibility in the field of biodegradable and antimicrobial materials for food packaging.
Collapse
Affiliation(s)
- Ying Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China
| | - Lin Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China.
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 201418 Shanghai, China.
| |
Collapse
|
38
|
Casanova F, Pereira CF, Ribeiro AB, Castro PM, Freixo R, Martins E, Tavares-Valente D, Fernandes JC, Pintado ME, Ramos ÓL. Biological Potential and Bioaccessibility of Encapsulated Curcumin into Cetyltrimethylammonium Bromide Modified Cellulose Nanocrystals. Pharmaceuticals (Basel) 2023; 16:1737. [PMID: 38139863 PMCID: PMC10747507 DOI: 10.3390/ph16121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Curcumin is a natural phenolic compound with important biological functions. Despite its demonstrated efficacy in vitro, curcumin biological activities in vivo are dependent on its bioaccessibility and bioavailability, which have been highlighted as a crucial challenge. Cetyltrimethylammonium bromide-modified cellulose nanocrystals (CNC-CTAB) have been shown to be effective in curcumin encapsulation, as they have the potential to enhance biological outcomes. This study evaluated the biological effects of curcumin encapsulated within CNC-CTAB structures, namely its antioxidant, anti-inflammatory and antimicrobial properties, as well as the release profile under digestion conditions and intestinal permeability. Encapsulated curcumin demonstrated antioxidant and anti-inflammatory properties, effectively reducing reactive oxygen species and cytokine production by intestinal cells. The delivery system exhibited antimicrobial properties against Campylobacter jejuni bacteria, further suggesting its potential in mitigating intestinal inflammation. The system showed the ability to protect curcumin from degradation and facilitate its interaction with the intestinal epithelium, highlighting the potential of CNC-CTAB as carrier to enhance curcumin intestinal biological functions.
Collapse
Affiliation(s)
- Francisca Casanova
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Alessandra B Ribeiro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Pedro M Castro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ricardo Freixo
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Eva Martins
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Diana Tavares-Valente
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João C Fernandes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Óscar L Ramos
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
39
|
Varzaru I, Oancea AG, Vlaicu PA, Saracila M, Untea AE. Exploring the Antioxidant Potential of Blackberry and Raspberry Leaves: Phytochemical Analysis, Scavenging Activity, and In Vitro Polyphenol Bioaccessibility. Antioxidants (Basel) 2023; 12:2125. [PMID: 38136244 PMCID: PMC10740815 DOI: 10.3390/antiox12122125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The goal of this research was nutritional evaluation through the phytochemical analysis of blackberry and raspberry leaves, the screening of their biological activity (antioxidant capacity and inhibition of lipid peroxidation), and the investigation of the effect of in vitro gastrointestinal digestion (GID) of blackberry and raspberry leaves on the bioaccessibility of polyphenol subclasses. The concentrations of the analyzed liposoluble antioxidants were higher (p < 0.05) in blackberry leaves compared to raspberry leaves, while a significant (p < 0.05) higher content of water-soluble antioxidants was registered in raspberry leaves (with a total polyphenol content of 26.2 mg GAE/g DW of which flavonoids accounted for 10.6 mg/g DW). Blackberry leaves had the highest antioxidant capacity inhibition of the superoxide radicals (O2•-), while raspberry leaves registered the highest inhibition of hydroxyl radicals (•OH), suggesting a high biological potency in scavenging-free radicals under in vitro systems. The maximum inhibition percentage of lipid peroxidation was obtained for blackberry leaves (24.86% compared to 4.37% in raspberry leaves), suggesting its potential to limit oxidative reactions. Simulated in vitro digestion showed that hydroxybenzoic acids registered the highest bioaccessibility index in the intestinal phase of both types of leaves, with gallic acid being one of the most bioaccessible phenolics. The outcomes of this investigation reveal that the most significant release of phenolic compounds from blackberry and raspberry leaves occurs either during or after the gastric phase. Knowledge about the bioaccessibility and stability of polyphenol compounds during digestion can provide significant insights into the bioavailability of these molecules and the possible effectiveness of plant metabolites for human health.
Collapse
Affiliation(s)
- Iulia Varzaru
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No. 1, 077015 Balotesti, Romania; (A.G.O.); (P.A.V.); (M.S.)
| | | | | | | | - Arabela Elena Untea
- Feed and Food Quality Department, National Research and Development Institute for Biology and Animal Nutrition, Calea Bucuresti, No. 1, 077015 Balotesti, Romania; (A.G.O.); (P.A.V.); (M.S.)
| |
Collapse
|
40
|
Maugeri A, Russo C, Patanè GT, Barreca D, Mandalari G, Navarra M. The Inhibition of Mitogen-Activated Protein Kinases (MAPKs) and NF-κB Underlies the Neuroprotective Capacity of a Cinnamon/Curcumin/Turmeric Spice Blend in Aβ-Exposed THP-1 Cells. Molecules 2023; 28:7949. [PMID: 38138438 PMCID: PMC10745857 DOI: 10.3390/molecules28247949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by an increased level of β-amyloid (Aβ) protein deposition in the brain, yet the exact etiology remains elusive. Nowadays, treatments only target symptoms, thus the search for novel strategies is constantly stimulated, and looking to natural substances from the plant kingdom. The aim of this study was to investigate the neuroprotective effects of a spice blend composed of cinnamon bark and two different turmeric root extracts (CCSB) in Aβ-exposed THP-1 cells as a model of neuroinflammation. In abiotic assays, CCSB demonstrated an antioxidant capacity up to three times stronger than Trolox in the ORAC assay, and it reduced reactive oxygen species (ROS) induced by the amyloid fragment in THP-1 cells by up to 39.7%. Moreover, CCSB lowered the Aβ stimulated secretion of the pro-inflammatory cytokines IL-1β and IL-6 by up to 24.9% and 43.4%, respectively, along with their gene expression by up to 25.2% and 43.1%, respectively. The mechanism involved the mitogen-activated protein kinases ERK, JNK and p38, whose phosphorylation was reduced by up to 51.5%, 73.7%, and 58.2%, respectively. In addition, phosphorylation of p65, one of the five components forming NF-κB, was reduced by up to 86.1%. Our results suggest that CCSB can counteract the neuroinflammatory stimulus induced by Aβ-exposure in THP-1 cells, and therefore can be considered a potential candidate for AD management.
Collapse
Affiliation(s)
- Alessandro Maugeri
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Caterina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (G.T.P.); (D.B.)
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (G.T.P.); (D.B.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (G.T.P.); (D.B.)
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (G.T.P.); (D.B.)
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (C.R.); (G.T.P.); (D.B.)
| |
Collapse
|
41
|
Verma S, Suman P, Mandal S, Kumar R, Sahana N, Siddiqui N, Chakdar H. Assessment and identification of bioactive metabolites from terrestrial Lyngbya spp. responsible for antioxidant, antifungal, and anticancer activities. Braz J Microbiol 2023; 54:2671-2687. [PMID: 37688688 PMCID: PMC10689636 DOI: 10.1007/s42770-023-01111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023] Open
Abstract
Lyngbya from fresh and marine water produces an array of pharmaceutically bioactive therapeutic compounds. However, Lyngbya from agricultural soil is still poorly investigated. Hence, in this study, the bioactive potential of different Lyngbya spp. extract was explored. Intracellular petroleum ether extract of L. hieronymusii K81 showed the highest phenolic content (626.22 ± 0.65 μg GAEs g-1 FW), while intracellular ethyl acetate extract of L. aestuarii K97 (74.02 ± 0.002 mg QEs g-1 FW) showed highest flavonoid content. Highest free radical scavenging activity in terms of ABTS•+ was recorded in intracellular methanolic extract of Lyngbya sp. K5 (97.85 ± 0.068%), followed by L. wollei K80 (97.22 ± 0.059%) while highest DPPH• radical scavenging activity observed by intracellular acetone extract of Lyngbya sp. K5 (54.59 ± 0.165%). All the extracts also showed variable degrees of antifungal activities against Fusarium udum, F. oxysporum ciceris, Colletotrichum capsici, and Rhizoctonia solani. Further, extract of L. wollei K80 and L. aestuarii K97 showed potential anticancer activities against MCF7 (breast cancer) cell lines. GC-MS analyses of intracellular methanolic extract of L. wollei K80 showed the dominance of PUFAs with 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z) as the most abundant bioactive compound. On the other hand, the extracellular ethyl acetate extract of L. aestuarii K97 was rich in alkanes and alkenes with 1-hexyl-2-nitrocyclohexane as the most predominant compound. Extracts of Lyngbya spp. rich in novel secondary metabolites such as PUFAs, alkanes, and alkenes can be further explored as an alternative and low-cost antioxidant and potential apoptogens for cancer therapy.
Collapse
Affiliation(s)
- Shaloo Verma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Prabhat Suman
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Somnath Mandal
- Department of Biochemistry, Uttar Banga Krishi Vishwavidyalaya (UBKV), Cooch Behar, West Bengal, 736165, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Nandita Sahana
- Department of Biochemistry, Uttar Banga Krishi Vishwavidyalaya (UBKV), Cooch Behar, West Bengal, 736165, India
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
42
|
Ianni F, Scandar S, Mangiapelo L, Blasi F, Marcotullio MC, Cossignani L. NADES-Assisted Extraction of Polyphenols from Coriander Seeds: A Systematic Optimization Study. Antioxidants (Basel) 2023; 12:2048. [PMID: 38136168 PMCID: PMC10741060 DOI: 10.3390/antiox12122048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Coriandrum sativum L. seeds are widely recognized for their traditional use in medicine. Among the most investigated components, the terpenoid linalool and monounsaturated petroselinic acid have attracted interest for their nutritional value. Instead, minor attention was paid to the polyphenolic fraction, resulting still being incomplete today. This study aimed to develop a systematic approach in which green natural deep eutectic solvents (NADES) were combined with conventional (maceration, MAC) or non-conventional (ultrasound-assisted extraction, UAE) techniques in a one-step methodology to recover polyphenols from coriander seeds. The NADES system choline chloride-citric acid (ChCl:CA, 1:1) was firstly evaluated, coupled with MAC or UAE, and then compared with ChCl-Urea (ChCl:Ur, 1:1) and ChCl-Glucose (ChCl:Glu, 1:1) under optimal conditions (20 min extraction time). The system ChCl:Ur UAE significantly improved the extraction of chlorogenic acid and its isomer (453.90 ± 4.77 and 537.42 ± 1.27 µg/g, respectively), while the system ChCl:Glu UAE improved the extraction of protocatechuic, caffeic and p-coumaric acids (131.13 ± 6.16, 269.03 ± 4.15 and 57.36 ± 0.06 µg/g, respectively). The highest levels of rutin were obtained with ChCl:CA-based NADES when the MAC technique was applied (820.31 ± 28.59 µg/g). These findings indicate that the NADES composition could be appropriately modulated to tailor extraction towards higher levels of a desirable bioactive for further applications.
Collapse
Affiliation(s)
- Federica Ianni
- Department of Pharmaceutical Sciences, Section of Food, Biochemical, Physiological and Nutrition Sciences, University of Perugia, 06126 Perugia, Italy; (L.M.); (F.B.); (L.C.)
| | - Samir Scandar
- Department of Pharmaceutical Sciences, Section of Morphological, Biomolecular, Nutraceutical and Health Sciences (SIMBIONUS), University of Perugia, 06122 Perugia, Italy;
| | - Luciano Mangiapelo
- Department of Pharmaceutical Sciences, Section of Food, Biochemical, Physiological and Nutrition Sciences, University of Perugia, 06126 Perugia, Italy; (L.M.); (F.B.); (L.C.)
| | - Francesca Blasi
- Department of Pharmaceutical Sciences, Section of Food, Biochemical, Physiological and Nutrition Sciences, University of Perugia, 06126 Perugia, Italy; (L.M.); (F.B.); (L.C.)
| | - Maria Carla Marcotullio
- Department of Pharmaceutical Sciences, Section of Morphological, Biomolecular, Nutraceutical and Health Sciences (SIMBIONUS), University of Perugia, 06122 Perugia, Italy;
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, Section of Food, Biochemical, Physiological and Nutrition Sciences, University of Perugia, 06126 Perugia, Italy; (L.M.); (F.B.); (L.C.)
| |
Collapse
|
43
|
Cruz JDD, Mpalantinos MA, Oliveira LRD, Branches TG, Xavier A, Souza FDCDA, Aguiar JPL, Ferreira JLP, Silva JRDA, Amaral ACF. Nutritional and chemical composition of Alpinia zerumbet leaves, a traditional functional food. Food Res Int 2023; 173:113417. [PMID: 37803755 DOI: 10.1016/j.foodres.2023.113417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 10/08/2023]
Abstract
Alpinia zerumbet, a species of the Zingiberaceae family, is a common plant in tropical and subtropical areas used in traditional medicine to treat various diseases and also included as food in the traditional Okinawan diet (Japan). The leaves and rhizomes of this plant are used as spice and flavoring in foods such as rice, meats, and pasta. Studies of the chemical and nutritional characteristics of fresh leaves and of leaves submitted to thermal treatments such as boiling and steaming are lacking. In the current study, the leaves of A. zerumbet were subjected to boiling or steaming for 10, 20, and 30 min as part of the thermal treatments. The study also provides noteworthy results regarding the proximate composition, physical-chemical data, minerals, phenolic compounds, antioxidant activity, volatile compounds, and LC-MS chromatographic profiles of the extracts produced with fresh leaves and with thermal treatments. The carbohydrate content of A. zerumbet leaves improved during the thermal treatments, showing an increase after steaming (18.86 to 19.79%) and boiling for 30 min (25.85%). After boiling treatment for 20 min, a significant amount of protein was found (6.79%) and all heat treatments resulted in low content of lipid (<1.0%). The boiling treatment for 10 min (BT10) resulted in the highest concentrations of total phenolic components (TPC), 339.5 mg/g, and flavonoids (TF), 54.6 mg/g, among the three thermal treatments (BT10, BT20 and BT30). The results of the steaming treatments (ST 10, 20, and 30 min) differed, with ST20 leading to higher TPC (150.4 mg/g) and TF (65.0 mg/g). The quantity of total phenolics and flavonoids, as well as the antioxidant activity, were significantly affected by the cooking method and the length of time of sample exposure to heat. The samples boiled for 30 and 10 min had higher concentrations of antioxidant activity as measured by the phosphomolybdenum and DPPH methods (151.5 mg/g of extract and 101.5 μg/mL, respectively). Thirty-eight volatile organic compounds (VOCs) were identified by chromatographic analysis of fresh and thermally treated leaves of A. zerumbet. Terpenoids were the predominant class of volatile compounds in the fresh leaves and in all thermal treatments. p-Cymene, 1,8-cineole, 4-terpineol, linalool, α-copaene and β-bisabolene have the greatest impact on overall aroma perception, with odor activity values (OAV) greater than five. Among the phenolic compounds identified by LC-HRMS in the extracts of fresh and thermally treated leaves were proanthocyanidins, (+) catechin, (-) epicatechin, quercetin-3-O-glucoronide, isorhamnetin-3-O-glucoronide, kaempferol-3-O-rutinoside, pinocembrin, alpinetin, pinostrobin, and other compounds. The present results support the traditional use of this plant as a potential food with properties that certainly contribute to health improvement.
Collapse
Affiliation(s)
- Jefferson Diocesano da Cruz
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Maria A Mpalantinos
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Laena Rebouças de Oliveira
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | - Tainara Garcia Branches
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, AM, Brazil
| | - Alexandre Xavier
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Plataforma de métodos analíticos, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Francisca das Chagas do A Souza
- Laboratório de Análises Físico-Químicas e Funcionais dos Alimentos, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Jaime P Lopes Aguiar
- Laboratório de Análises Físico-Químicas e Funcionais dos Alimentos, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | | | - Jefferson Rocha de Andrade Silva
- Laboratório de Cromatografia, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal do Amazonas, Manaus, AM, Brazil.
| | - Ana Claudia Fernandes Amaral
- Laboratório de Plantas Medicinais e Derivados, Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
44
|
Umaña E, Solano G, Zamora G, Tamayo-Castillo G. Costa Rican Propolis Chemical Compositions: Nemorosone Found to Be Present in an Exclusive Geographical Zone. Molecules 2023; 28:7081. [PMID: 37894560 PMCID: PMC10609476 DOI: 10.3390/molecules28207081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The chemistry of Costa Rican propolis from Apis mellifera remains underexplored despite its potential applications. This study identified its chemical composition, linking chemotypes to antioxidant potential. METHODS Proton nuclear magnetic resonance (1H NMR) spectra were obtained for 119 propolis extracts and analyzed using multivariate analyses. In parallel, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay was used to assess antioxidant activity. A generalized linear regression model (GLM) correlated this with its chemical profiles and geographical origin. Chromatographic methods were used to isolate active and inactive compounds, which were identified using nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS). RESULTS Principal component analysis (PCA) revealed three chemical profile groups for the 119 propolis extracts, explaining 73% of the total variance with two components. Radical scavenging activity was found to correlate with chemical composition. Isolation yielded n-coniferyl benzoate in type I (EC50 = 190 µg/mL, ORAC = 0.60 µmol TE/µmol) and nemorosone in type II (EC50 = 300 µg/mL, ORAC = 0.7 µmol TE/µmol). Type III was represented in terpene-like components, which exhibited lower antioxidant activity. CONCLUSIONS This study categorizes Costa Rican propolis into three chemical types and identifies two key components linked to antioxidant activity. Notably, nemorosone, a valuable natural product, was found to be highly concentrated in a particular region of Costa Rica.
Collapse
Affiliation(s)
- Eduardo Umaña
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501, Costa Rica; (E.U.); (G.S.)
- Centro de Investigaciones Apícolas Tropicales (CINAT), Universidad Nacional, Heredia 3000, Costa Rica;
| | - Godofredo Solano
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501, Costa Rica; (E.U.); (G.S.)
| | - Gabriel Zamora
- Centro de Investigaciones Apícolas Tropicales (CINAT), Universidad Nacional, Heredia 3000, Costa Rica;
| | - Giselle Tamayo-Castillo
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José 11501, Costa Rica; (E.U.); (G.S.)
- Escuela de Química, Universidad de Costa Rica, San José 11501, Costa Rica
| |
Collapse
|
45
|
Tiranakwit T, Puangpun W, Tamprasit K, Wichai N, Siriamornpun S, Srisongkram T, Weerapreeyakul N. Phytochemical Screening on Phenolic, Flavonoid Contents, and Antioxidant Activities of Six Indigenous Plants Used in Traditional Thai Medicine. Int J Mol Sci 2023; 24:13425. [PMID: 37686230 PMCID: PMC10487580 DOI: 10.3390/ijms241713425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The antioxidant activity of a traditional Thai formula has been studied and compared to each plant. The formula comprised the roots of Caesalpinia digyna Rottler, Huberantha cerasoides (Roxb.) Benth), Oxyceros horridus Lour, Antidesma ghaesembilla Gaerth, Combretum quadrangulare Kurz, and Ziziphus cambodiana Pierre. The stem was also studied in comparison. The ethanolic extract from each plant part and the mixed plants mimicking the traditional formula were prepared and investigated for antioxidant capability in vitro via DPPH radical scavenging and ferric-reducing antioxidant power assays. The phytochemical constituents were determined by chemical screening, total phenolic (TPC) and flavonoid contents (TFC), and high-performance liquid chromatography. The relationship between antioxidant activity and the contributed phytochemicals was determined using correlation analysis and principal component analysis (PCA). Results showed that extracts from both parts of the plant formula showed the highest antioxidant activity compared to a single plant extract. Among the six plants, C. digyna exhibited the highest TPC and antioxidant activity. TPC had a strong positive correlation with antioxidant activity. PCA revealed that gallic acid contributed to the antioxidant activity. In conclusion, the ethanolic extracts of the traditional formula and C. digyna have the potential for further chemical characterization and study related to antioxidant activity.
Collapse
Affiliation(s)
- Tanawuth Tiranakwit
- Program of Pharmaceutical Sciences, Graduate School, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Wimonwan Puangpun
- Program of Doctor of Pharmacy, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Kawintra Tamprasit
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (K.T.); (T.S.)
| | - Natthapong Wichai
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Sirithon Siriamornpun
- Research Unit of Thai Food Innovation, Department of Food Technology and Nutrition, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Tarapong Srisongkram
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (K.T.); (T.S.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natthida Weerapreeyakul
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand; (K.T.); (T.S.)
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
46
|
Zhang Y, Kong Y, Xu W, Yang Z, Bao Y. Electron Beam Irradiation Alters the Physicochemical Properties of Chickpea Proteins and the Peptidomic Profile of Its Digest. Molecules 2023; 28:6161. [PMID: 37630413 PMCID: PMC10460040 DOI: 10.3390/molecules28166161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Irradiation can be used for the preservation of chickpea protein as it can destroy microorganisms, bacteria, virus, or insects that might be present. However, irradiation may provoke oxidative stress, and therefore modify the functionality and nutritional value of chickpea protein. In order to study the effects of irradiation on the physicochemical properties and digestion behaviour of chickpea protein, chickpea protein concentrate (CPC) was treated with electron beam irradiation (EBI) at doses of 5, 10, 15, and 20 kGy. After irradiation, protein solubility first increased at 10 kGy and 15 kGy, and then decreased at the higher dose of 20 kGy. This was supported by SDS-PAGE, where the intensity of major protein bands first increased and then decreased. Increased doses of EBI generally led to greater oxidative modification of proteins in CPC, indicated by reduced sulfhydryls and increased carbonyls. In addition, the protein structure was modified by EBI as shown by Fourier transform infrared spectroscopy analysis, where α-helix generally decreased, and β-sheet increased. Although the protein digestibility was not significantly affected by EBI, the peptidomic analysis of the digests revealed significant differences among CPC irradiated with varying doses. A total of 337 peptides were identified from CPC irradiated with 0 kGy, 10 kGy, and 20 kGy, with 18 overlapping peptides and 60, 29, and 40 peptides specific to the groups of 0, 10, and 20 kGy respectively. Theoretical calculation showed that the distribution of peptide length, hydrophobicity, net charge, and C-terminal residues were affected by irradiation. The 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity showed a marginal decrease with an increasing dose of irradiation. In conclusion, EBI led to oxidative modification and structural changes in chickpea protein, which subsequently affected the physicochemical properties of peptides obtained from in-vitro digestion of CPC, despite similar digestibility.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Y.K.); (W.X.)
| | - Yunfei Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Y.K.); (W.X.)
| | - Wanjun Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Y.K.); (W.X.)
| | - Zhen Yang
- Key Laboratory of Nuclear Agricultural Sciences, Ministry of Agriculture and Zhejiang Province, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Y.K.); (W.X.)
| |
Collapse
|
47
|
Spada FP, Lazarini JG, Batista PS, de Oliveira Sartori AG, Saliba ASMC, Pedroso Gomes do Amaral JE, Purgatto E, de Alencar SM. Cocoa powder and fermented jackfruit seed flour: A comparative cell-based study on their potential antioxidant and anti-inflammatory activities after simulated gastrointestinal digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4956-4965. [PMID: 36960787 DOI: 10.1002/jsfa.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/25/2023] [Accepted: 03/24/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Jackfruit seed flour can be used as a cocoa aroma replacer with similar technological properties. The purpose of this study was to investigate the in vivo toxicity and in vitro antioxidant activity of fermented jackfruit seed flour (Fjs) and non-alkaline cocoa powder (Nac). RESULTS Fjs and Nac extracts (Fjs-E and Nac-E) were produced and submitted to in vitro gastrointestinal digestion producing digested fractions named Fjs-D and Nac-D, respectively. Nac-E showed over two-fold higher oxygen radical absorbance capacity (ORAC) than Fjs-E. However, after simulated gastrointestinal digestion (in vitro), there were no significant differences between Nac-D and Fjs-D (P < 0.01). Similarly, the cellular antioxidant activity (CAA) of Nac-D and Fjs-D was not significantly different (P < 0.01). The anti-inflammatory assay in transgenic RAW 264.7 murine macrophages showed that Fjs-E did not affect cell viability up to 300 μg mL-1 (P > 0.05) and reduced by 15% the release of TNF-α (P < 0.05). Fjs-D did not affect cell viability up to 300 μg mL-1 (P > 0.05) and showed 58% reduction of NF-κB activation (P < 0.05), with no effects on TNF-α levels. Treatment with Nac-E up to 300 μg mL-1 did not decrease cell viability (P > 0.05) and reduced the release of TNF-α levels by 34% and 66% at 100 and 300 μg mL-1 , respectively (P < 0.05). Nac-D did not reduce the NF-κB activation or TNF-α levels at any tested concentration. CONCLUSION Collectively, these findings indicate that Fjs is a safe and promising functional ingredient with biological activities even after gastrointestinal digestion. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernanda Papa Spada
- Department of Food and Experimental Nutrition, Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
- Department of Agri-Food Industry, Food and Nutrition, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ), São Paulo, Brazil
| | - Josy Goldoni Lazarini
- Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
- Faculty of Medicine, Anhembi Morumbi University, Piracicaba, Brazil
| | | | - Alan Giovanini de Oliveira Sartori
- Department of Agri-Food Industry, Food and Nutrition, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ), São Paulo, Brazil
| | | | | | - Eduardo Purgatto
- Department of Food and Experimental Nutrition, Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food and Nutrition, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ), São Paulo, Brazil
| |
Collapse
|
48
|
Huang X, Wang M, Zhong S, Xu B. Comprehensive Review of Phytochemical Profiles and Health-Promoting Effects of Different Portions of Wampee ( Clausena lansium). ACS OMEGA 2023; 8:26699-26714. [PMID: 37546634 PMCID: PMC10398868 DOI: 10.1021/acsomega.3c02759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Clausena lansium, commonly known as wampee, is a subtropical fruit from the Rutaceae family characterized by its high nutrient content and numerous bioactive substances. This low-fat fruit is abundant in fiber, vitamins, minerals, and essential amino acids. Wampee has been found to contain several bioactive compounds, including essential oils, phenolic compounds, and alkaloids. These bioactive constituents provide numerous health-enhancing properties, such as antioxidant, neuroprotective, anticarcinogenic, anti-inflammatory, hepatoprotective, antidiabetic, and antimicrobial effects. The relationship between these compounds and their impacts on health has been explored in various studies. While the disease-prevention efficacy of C. lansium has been established, additional research is necessary to elucidate the precise mechanisms and metabolic pathways involved. This paper presents a comprehensive review of wampee, focusing on its bioactive compounds, the beneficial effects derived from its consumption, and the evidence supporting the development of wampee-based functional foods in future studies.
Collapse
Affiliation(s)
- Xin Huang
- Food
Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Minghe Wang
- Food
Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Saiyi Zhong
- College
of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Science and Technology Innovation
Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524088, China
| | - Baojun Xu
- Food
Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| |
Collapse
|
49
|
Xu M, Meng P, Wang H, Liu J, Guo T, Zhu Z, Bi Y. Synthesis, Characterization and Evaluation of a Novel Tetraphenolic Compound as a Potential Antioxidant. Antioxidants (Basel) 2023; 12:1473. [PMID: 37508011 PMCID: PMC10376215 DOI: 10.3390/antiox12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
A novel antioxidant containing four hydroxyl groups, namely 2,2'-(2-methylpropane-1,3-diyl)bis(hydroquinone) (MPBHQ), was synthesized using hydroquinone and methylallyl alcohol as the raw materials, phosphoric acid as the catalyst, and toluene as the solvent system. The structure of MPBHQ was characterized by mass spectrometry, nuclear magnetic resonance, ultraviolet spectroscopy, and infrared spectroscopy. The results showed that MPBHQ has a good radical scavenging effect, as measured by the ORAC assay, DPPH radical scavenging assay, ABST radical scavenging assay, and Rancimat test. In fatty acid methyl ester and lard without exogenous antioxidants, MPBHQ showed better antioxidant performance than butylated hydroxytoluene (BHT), hydroquinone (HQ), tert-butyl hydroquinone (TBHQ), and propyl gallate (PG), meeting the need for a new antioxidant with better properties to ensure the oxidative stability of lipids and biodiesel.
Collapse
Affiliation(s)
- Mengqi Xu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Pengcheng Meng
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hongyan Wang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jun Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Tao Guo
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhenjie Zhu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yanlan Bi
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
50
|
Ozon EA, Iuga IDM, Mititelu M, Musuc AM, Manolescu BN, Petrescu S, Cusu JP, Rusu A, Surdu VA, Oprea E, Neacșu SM, Karampelas O, Elian V. Pharmacotechnical, Physico-Chemical, and Antioxidant Evaluation of Newly Developed Capsule Formulations. Int J Mol Sci 2023; 24:11426. [PMID: 37511185 PMCID: PMC10379583 DOI: 10.3390/ijms241411426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The excess of free radicals causes numerous imbalances in the body that lead to premature aging, the degradation of internal structures, and the appearance of numerous pathologies responsible for the increased risk of premature death. The present work aims to evaluate the physical, chemical, pharmacotechnical, and antioxidant activity of newly achieved capsule formulations. These two formulations were F1a.i., which contains melatonin:biotin:coenzyme Q10 (weight ratio of 1:2:60), and F2a.i., which contains quercetin:resveratrol:biotin:coenzyme Q10 (weight ratio of 10:10:1:10). The adequate selection of the excipient types and amounts for final capsule formulations (F1c.c., F2c.c.) was based on preformulation studies performed on the powders containing active ingredients. The antioxidant activity assessed using three methods (ABTS, DPPH, and FRAP) compared with acid ascorbic as a positive control demonstrated that the F2c.c. formulation possesses the strongest antioxidant capacity. The results confirmed the suitable formulation and the accurate selection of the types and amounts of active ingredients, as well as the auxiliary excipients used in newly developed capsule formulations as supplements with an excellent antioxidant effect on the human body.
Collapse
Affiliation(s)
- Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Izabela Dana Maria Iuga
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Adina Magdalena Musuc
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Bogdan Nicolae Manolescu
- "C. Nenitescu" Department of Organic Chemistry, Faculty of Applied Chemistry and Science of Materials, University "Politehnica" of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Simona Petrescu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Jeanina Pandele Cusu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Rusu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Eliza Oprea
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalilor Way, 060101 Bucharest, Romania
| | | | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases "Carol Davila" University of Medicine and Pharmacy, INDNBM N.C. Paulescu, 5-7 Ion Movila Street, 030167 Bucharest, Romania
| |
Collapse
|