1
|
Pei X, Li H, Yu H, Wang W, Mao D. APN Expression in Serum and Corpus Luteum: Regulation of Luteal Steroidogenesis Is Possibly Dependent on the AdipoR2/AMPK Pathway in Goats. Cells 2023; 12:1393. [PMID: 37408227 DOI: 10.3390/cells12101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Adiponectin (APN) is an essential adipokine for a variety of reproductive processes. To investigate the role of APN in goat corpora lutea (CLs), CLs and sera from different luteal phases were collected for analysis. The results showed that the APN structure and content had no significant divergence in different luteal phases both in CLs and sera; however, high molecular weight APN was dominant in serum, while low molecular weight APN was more present in CLs. The luteal expression of both AdipoR1/2 and T-cadherin (T-Ca) increased on D11 and 17. APN and its receptors (AdipoR1/2 and T-Ca) were mainly expressed in goat luteal steroidogenic cells. The steroidogenesis and APN structure in pregnant CLs had a similar model as in the mid-cycle CLs. To further explore the effects and mechanisms of APN in CLs, steroidogenic cells from pregnant CLs were isolated to detect the AMPK-mediated pathway by the activation of APN (AdipoRon) and knockdown of APN receptors. The results revealed that P-AMPK in goat luteal cells increased after incubation with APN (1 μg/mL) or AdipoRon (25 μM) for 1 h, and progesterone (P4) and steroidogenic proteins levels (STAR/CYP11A1/HSD3B) decreased after 24 h. APN did not affect the steroidogenic protein expression when cells were pretreated with Compound C or SiAMPK. APN increased P-AMPK and reduced the CYP11A1 expression and P4 levels when cells were pretreated with SiAdipoR1 or SiT-Ca, while APN failed to affect P-AMPK, the CYP11A1 expression or the P4 levels when pretreated with SiAdipoR2. Therefore, the different structural forms of APN in CLs and sera may possess distinct functions; APN might regulate luteal steroidogenesis through AdipoR2 which is most likely dependent on AMPK.
Collapse
Affiliation(s)
- Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Improvement effects of esculetin on the formation and development of atherosclerosis. Biomed Pharmacother 2022; 150:113001. [PMID: 35658220 DOI: 10.1016/j.biopha.2022.113001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis is one of the potential causes of death in patients with cardiovascular disease. With the discovery of new anti atherosclerotic drugs becoming the pursuit of the pharmaceutical industry, natural products have attracted more and more attention because of their unique efficacy in the treatment of atherosclerosis. More and more studies have shown that esculetin, a coumarin mainly found in cortex fraxini, can improve atherosclerosis by participating in cellular antioxidant responses and reducing inflammation related pathogenesis. This paper summarizes the researches of esculetin on anti-atherosclerosis in the past two decades. Esculetin plays an anti atherosclerotic role through reducing blood triglyceride level, preventing the proliferation of vascular smooth muscle cells (VSMC) and the production of matrix metallopeptidase 9 (MMP-9), inhibiting the oxidation of low density lipoprotein (LDL) and the secretion of adhesion factors and chemokines, and increasing the outflow level of high density lipoprotein cholesterol (HDL-C). Esculetin is safe and reliable, easy to be absorbed by the body and can be synthesized in a variety of ways. Although there are still few clinical studies on anti-atherosclerosis, in vivo experiments have proved that esculetin has high bioavailability. From the current research, the anti-atherosclerotic effect of esculetin is positive and encouraging. However, much work remains to be done to clarify the molecular mechanism of esculetin in the treatment of atherosclerosis.
Collapse
|
3
|
Wang MT, Guo WL, Yang ZY, Chen F, Lin TT, Li WL, Lv XC, Rao PF, Ai LZ, Ni L. Intestinal microbiomics and liver metabolomics insights into the preventive effects of chromium (III)-enriched yeast on hyperlipidemia and hyperglycemia induced by high-fat and high-fructose diet. Curr Res Food Sci 2022; 5:1365-1378. [PMID: 36092021 PMCID: PMC9449561 DOI: 10.1016/j.crfs.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
In recent years, organic chromium (III) supplements have received increasing attentions for their low toxicity, high bioavailability and wide range of health-promoting benefits. This study aimed to investigate the preventive effects of chromium (III)-enriched yeast (YCr) on high-fat and high-fructose diet (HFHFD)-induced hyperlipidemia and hyperglycemia in mice, and further clarify its mechanism of action from the perspective of intestinal microbiomics and liver metabolomics. The results indicated that oral administration of YCr remarkably inhibited the aberrant elevations of body weight, blood glucose and lipid levels, hepatic cholesterol (TC) and triglyceride (TG) levels caused by HFHFD. Liver histological examination showed that oral YCr intervention inhibited HFHFD induced liver lipid accumulation. Besides, 16S rDNA amplicon sequencing showed that YCr intervention was beneficial to ameliorating intestinal microbiota dysbiosis by altering the proportion of some intestinal microbial phylotypes. Correlation-based network analysis indicated that the key intestinal microbial phylotypes intervened by YCr were closely related to some biochemical parameters associated with glucose and lipid metabolism. Liver metabolomics analysis revealed that dietary YCr intervention significantly regulated the levels of some biomarkers involved in purine metabolism, glycerophospholipid metabolism, citrate cycle, pyrimidine metabolism, glycerophospholipid metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and so on. Moreover, dietary YCr intervention regulated the mRNA levels of key genes associated with glucose, cholesterol, fatty acids and bile acids metabolism in liver. These findings suggest that dietary YCr intervention has beneficial effects on glucose and lipid metabolism by regulating intestinal microbiota and liver metabolic pathway, and thus can be served as a functional component to prevent hyperlipidemia and hyperglycemia. Chromium-enriched yeast enhances glucose tolerance and liver glycogen synthesis. Chromium-enriched yeast ameliorates the disturbance of intestinal microbiota. Explore the hepatoprotective effect of chromium-enriched yeast based on metabolomics. Chromium-enriched yeast alleviates lipid metabolism through “gut-liver” axis. Chromium-enriched yeast intervention affects hepatic gene transcription levels.
Collapse
|
4
|
Zhang L, Xie Q, Li X. Esculetin: A review of its pharmacology and pharmacokinetics. Phytother Res 2021; 36:279-298. [PMID: 34808701 DOI: 10.1002/ptr.7311] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/12/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022]
Abstract
Esculetin is a natural dihydroxy coumarin; it is mainly extracted from twig skin and the trunk bark of the Chinese herbal medicine Fraxinus rhynchophylla Hance. Emerging evidence suggests that esculetin has a wide range of pharmacological activities. Based on its fundamental properties, including antioxidant, antiinflammatory, antiapoptotic, anticancer, antidiabetic, neuroprotective, and cardiovascular protective activities, as well as antibacterial activity, among others, esculetin is expected to be a therapeutic drug for specific disease indications, such as cancer, diabetes, atherosclerosis, Alzheimer's disease (AD), Parkinson's disease (PD), nonalcoholic fatty liver disease (NAFLD), and other diseases. The oral bioavailability of esculetin was shown by studies to be low. The extensive glucuronidation was described to be the main metabolic pathway of esculetin and C-7 phenolic hydroxyl to be its major metabolic site. With the development of scientific research technology, the pharmacological effects of esculetin are identified and its potential for the treatment of diseases is demonstrated. The underlining mechanisms of action and biological activities as well as the pharmacokinetic data of the analyzed compound reported so far are highlighted in this review with the aim of becoming a proven, and applicable insight and reference for further studies on the utilization of esculetin.
Collapse
Affiliation(s)
- Linlin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingxuan Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Plants Secondary Metabolites as Blood Glucose-Lowering Molecules. Molecules 2021; 26:molecules26144333. [PMID: 34299610 PMCID: PMC8307461 DOI: 10.3390/molecules26144333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, significant advances in modern medicine and therapeutic agents have been achieved. However, the search for effective antidiabetic drugs is continuous and challenging. Over the past decades, there has been an increasing body of literature related to the effects of secondary metabolites from botanical sources on diabetes. Plants-derived metabolites including alkaloids, phenols, anthocyanins, flavonoids, stilbenoids, saponins, tannins, polysaccharides, coumarins, and terpenes can target cellular and molecular mechanisms involved in carbohydrate metabolism. In addition, they can grant protection to pancreatic beta cells from damage, repairing abnormal insulin signaling, minimizing oxidative stress and inflammation, activating AMP-activated protein kinase (AMPK), and inhibiting carbohydrate digestion and absorption. Studies have highlighted many bioactive naturally occurring plants' secondary metabolites as candidates against diabetes. This review summarizes the current knowledge compiled from the latest studies published during the past decade on the mechanism-based action of plants-derived secondary metabolites that can target various metabolic pathways in humans against diabetes. It is worth mentioning that the compiled data in this review will provide a guide for researchers in the field, to develop candidates into environment-friendly effective, yet safe antidiabetics.
Collapse
|
6
|
Serralha RS, Rodrigues IF, Bertolini A, Lima DY, Nascimento M, Mouro MG, Punaro GR, Visoná I, Rodrigues AM, Higa EMS. Esculin reduces P2X7 and reverses mitochondrial dysfunction in the renal cortex of diabetic rats. Life Sci 2020; 254:117787. [PMID: 32417372 DOI: 10.1016/j.lfs.2020.117787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
AIMS To evaluate the effects of esculin treatment on P2X7 receptor and mitochondrial dysfunction in the renal cortex of diabetic rats. MAIN METHODS Male Wistar rats, 7 weeks old, were unilaterally nephrectomized. Part of these animals were induced to diabetes using streptozotocin (60 mg/kg). Diabetes was confirmed 48 h after induction, with blood glucose levels ≥200 mg/dL. Part of control and diabetic animals were selected to receive daily doses of esculin (50 mg/kg), during 8 weeks. The animals were placed in metabolic cages at the eighth week of protocol for 24 h urine collection and a small aliquot of blood was collected for biochemical analysis. After this procedure, the animals were euthanized and the remaining kidney was stored for histopathological analysis, Western blotting and mitochondrial high-resolution respirometry. KEY FINDINGS Although esculin did not change metabolic parameters, renal biochemical function, neither TBARS in DM rats, esculin reduced P2X7 levels in these animals and restored mitochondrial function via glycolysis substrates and β-oxidation. Besides, at the histological analysis, we observed that esculin reduced inflammatory infiltrates and collagen IV deposits as compared to diabetic group. SIGNIFICANCE Esculin attenuated the development of renal injuries caused by hyperglycemia, proinflammatory and oxidative mechanisms mediated by P2X7 receptor, as seen by histological findings and improved mitochondrial function in diabetic animals. This suggests that esculin could be used as an adjuvant therapy to prevent the diabetic nephropathy.
Collapse
Affiliation(s)
- R S Serralha
- Translational Medicine, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil.
| | - I F Rodrigues
- Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil; Nephrology Division, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil
| | - A Bertolini
- Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil; Nephrology Division, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil
| | - D Y Lima
- Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil; Nephrology Division, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil
| | - M Nascimento
- Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil; Nephrology, Universidade Federal de Sao Paulo, Brazil
| | - M G Mouro
- Translational Medicine, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil
| | - G R Punaro
- Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil; Nephrology Division, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil
| | - I Visoná
- Pathology Department, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil
| | - A M Rodrigues
- Translational Medicine, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil
| | - E M S Higa
- Translational Medicine, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil; Laboratory of Nitric Oxide and Oxidative Stress, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil; Nephrology Division, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil; Emergency Division, Universidade Federal de Sao Paulo (UNIFESP-EPM), Brazil
| |
Collapse
|
7
|
Liu R, Su C, Xu Y, Shang K, Sun K, Li C, Lu J. Identifying potential active components of walnut leaf that action diabetes mellitus through integration of UHPLC-Q-Orbitrap HRMS and network pharmacology analysis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112659. [PMID: 32058009 DOI: 10.1016/j.jep.2020.112659] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Walnut leaf (WL) is a hypoglycemic herbal medication with blood glucose-lowering activity that can affect diabetes mellitus (DM). However, the active components of WL and the mechanisms by which these compounds affect DM are unclear. AIM OF STUDY This study aimed to determine these effective ingredients and elucidate the potential mechanisms by which they affect DM via ultra-high performance liquid chromatography-hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS) coupled with network pharmacology analysis. MATERIALS AND METHODS First, UHPLC-Q-Orbitrap HRMS was utilized to identify components of WL. Second, the putative targets of the components were identified and predicted based on chemical similarity and online databases. Third, the key candidate targets and potential active components were identified through topological analysis of a component-disease target interaction network. Finally, interactions between active components and therapeutic targets were confirmed by molecular docking analysis. RESULTS One hundred and thirty components were identified in WL, among which 38 were considered potentially bioactive, as they showed hypoglycemic effects. Among these 38, 8 key active components possessed high similarities and shared 4 targets with approved drugs. These findings were confirmed by molecular docking analysis. CONCLUSION The approach combining UHPLC-Q-Orbitrap HRMS with network pharmacology analysis is a rapid and effective tool to identify potentially bioactive constituents in medicinal plants and prescriptions.
Collapse
Affiliation(s)
- Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Chaonan Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Yumeng Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Kangle Shang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Kang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Caihong Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China.
| |
Collapse
|
8
|
Xu X, Dai M, Lao F, Chen F, Hu X, Liu Y, Wu J. Effect of glucoraphanin from broccoli seeds on lipid levels and gut microbiota in high-fat diet-fed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103858] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
9
|
Yang Y, Zhao Y, Li W, Wu Y, Wang X, Wang Y, Liu T, Ye T, Xie Y, Cheng Z, He J, Bai P, Zhang Y, Ouyang L. Emerging targets and potential therapeutic agents in non-alcoholic fatty liver disease treatment. Eur J Med Chem 2020; 197:112311. [PMID: 32339855 DOI: 10.1016/j.ejmech.2020.112311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 02/08/2023]
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is the most common chronic liver disease in the world, which is characterized by liver fat accumulation unrelated to excessive drinking. Indeed, it attracts growing attention and becomes a global health problem. Due to the complexity of the NAFLD pathogenic mechanism, no related drugs were approved by Food and Drug Administration (FDA) till now. However, it is encouraging that a series of candidate drugs have entered the clinical trial stage with expectation to treat NAFLD. In this review, we summarized the main pathways and pathogenic mechanisms of NAFLD, as well as introduced the main potential therapeutic targets and the corresponding compounds involved in metabolism, inflammation and fibrosis. Furthermore, we also discuss the progress of these compounds, such as drug design and optimization, the choice of pharmacological properties and druglikeness, and the analysis of structure-activity relationship. This review offers a medium on future drug design and development, to be beneficial to relevant studies.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yu Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenzhen Li
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuyao Wu
- West China School of Public Health/No.4 West China Teaching Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yijie Wang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Tingmei Liu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jun He
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| |
Collapse
|
10
|
Campos L, López-Gresa MP, Fuertes D, Bellés JM, Rodrigo I, Lisón P. Tomato glycosyltransferase Twi1 plays a role in flavonoid glycosylation and defence against virus. BMC PLANT BIOLOGY 2019; 19:450. [PMID: 31655554 PMCID: PMC6815406 DOI: 10.1186/s12870-019-2063-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/09/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Secondary metabolites play an important role in the plant defensive response. They are produced as a defence mechanism against biotic stress by providing plants with antimicrobial and antioxidant weapons. In higher plants, the majority of secondary metabolites accumulate as glycoconjugates. Glycosylation is one of the commonest modifications of secondary metabolites, and is carried out by enzymes called glycosyltransferases. RESULTS Here we provide evidence that the previously described tomato wound and pathogen-induced glycosyltransferase Twi1 displays in vitro activity toward the coumarins scopoletin, umbelliferone and esculetin, and the flavonoids quercetin and kaempferol, by uncovering a new role of this gene in plant glycosylation. To test its activity in vivo, Twi1-silenced transgenic tomato plants were generated and infected with Tomato spotted wilt virus. The Twi1-silenced plants showed a differential accumulation of Twi1 substrates and enhanced susceptibility to the virus. CONCLUSIONS Biochemical in vitro assays and transgenic plants generation proved to be useful strategies to assign a role of tomato Twi1 in the plant defence response. Twi1 glycosyltransferase showed to regulate quercetin and kaempferol levels in tomato plants, affecting plant resistance to viral infection.
Collapse
Affiliation(s)
- Laura Campos
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - María Pilar López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Diana Fuertes
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - José María Bellés
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
11
|
Sim MO, Lee HJ, Jeong DE, Jang JH, Jung HK, Cho HW. 6′-O-acetyl mangiferin from Iris rossii Baker inhibits lipid accumulation partly via AMPK activation in adipogenesis. Chem Biol Interact 2019; 311:108755. [DOI: 10.1016/j.cbi.2019.108755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/24/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
|
12
|
Lee J, Yang J, Jeon J, Sang Jeong H, Lee J, Sung J. Hepatoprotective effect of esculetin on ethanol-induced liver injury in human HepG2 cells and C57BL/6J mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
13
|
Xiong L, Ren F, Lv J, Zhang H, Guo H. Lactoferrin attenuates high-fat diet-induced hepatic steatosis and lipid metabolic dysfunctions by suppressing hepatic lipogenesis and down-regulating inflammation in C57BL/6J mice. Food Funct 2018; 9:4328-4339. [DOI: 10.1039/c8fo00317c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Lactoferrin was reported to exert modulatory effects on lipid metabolism, but the regulatory mechanisms remain unclear.
Collapse
Affiliation(s)
- Ling Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Jiayi Lv
- Key Laboratory of Functional Dairy
- Co-constructed by the Ministry of Education and Beijing Government
- China Agricultural University
- Beijing 100083
- China
| | - Hao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| | - Huiyuan Guo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Food Science & Nutritional Engineering
- China Agricultural University
- Beijing 100083
- China
| |
Collapse
|
14
|
Esculetin ameliorates insulin resistance and type 2 diabetic nephropathy through reversal of histone H3 acetylation and H2A lysine 119 monoubiquitination. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
An insight into anti-diabetic properties of dietary phytochemicals. PHYTOCHEMISTRY REVIEWS 2017. [DOI: 10.1007/s11101-017-9496-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Pandey A, Raj P, Goru SK, Kadakol A, Malek V, Sharma N, Gaikwad AB. Esculetin ameliorates hepatic fibrosis in high fat diet induced non-alcoholic fatty liver disease by regulation of FoxO1 mediated pathway. Pharmacol Rep 2017; 69:666-672. [PMID: 28527877 DOI: 10.1016/j.pharep.2017.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/20/2017] [Accepted: 02/03/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD), a chronic metabolic disorder is associated with oxidative stress, inflammation and fibrotic cascades. In this study, we aimed to examine the effects of Esculetin, a well-known anti-oxidant on TGF-β1 mediated liver fibrosis and FoxO1 activity. METHODS A non-genetic murine model for NAFLD was developed by chronic high fat diet (HFD) (58% calories from fats) feeding in Wistar rats. The plasma biochemical parameters, liver function tests, oxidative stress, and histopathological alterations were assessed. The alterations in extracellular matrix (ECM) deposition and FoxO1 activity were assessed by immunohistochemistry. RESULTS The aberrations in plasma parameters, liver functioning, morphometric and microscopic changes in liver structure of HFD fed rats were significantly improved by treatment with Esculetin. Liver fibrosis, identified in the form of collagen deposition and expression of fibrotic proteins like TGF-β1 and fibronectin was also markedly controlled by Esculetin. The expression of phospho-FoxO1 was found to be reduced in HFD fed rats' liver, showing an increase in activation of FoxO1 under insulin resistant and hyperglycemic states. Esculetin treatment could improve phospho-FoxO1 expression, thus showing its ability to act on Akt/PI3K/FoxO1 pathway. CONCLUSIONS As per the previous studies, a potential therapy for NAFLD may be the one with multi-faceted actions on insulin resistance, oxidative stress, inflammation and fibrosis. This study demonstrates the efficiency of Esculetin in improving liver fibrosis in HFD induced NAFLD.
Collapse
Affiliation(s)
- Anuradha Pandey
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Priyank Raj
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Santosh Kumar Goru
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Almesh Kadakol
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Vajir Malek
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Nisha Sharma
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, India.
| |
Collapse
|
17
|
Choi RY, Ham JR, Lee MK. Esculetin prevents non-alcoholic fatty liver in diabetic mice fed high-fat diet. Chem Biol Interact 2016; 260:13-21. [PMID: 27769711 DOI: 10.1016/j.cbi.2016.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/22/2016] [Accepted: 10/17/2016] [Indexed: 12/19/2022]
Abstract
This study investigated the effects and mechanism of esculetin (6,7-dihydroxycoumarin) on non-alcoholic fatty liver in diabetic mice fed high-fat diet (HFD). The diabetic mice model was induced by injection of streptozotocin, after which they were fed HFD diet with or without esculetin for 11 weeks. Non-diabetic mice were provided a normal diet. Diabetes induced hepatic hypertrophy, lipid accumulation and droplets; however, esculetin reversed these changes. Esculetin treatment in diabetic mice fed HFD significantly down-regulated expression of lipid synthesis genes (Fasn, Dgat2 and Plpp2) and inflammation genes (Tlr4, Myd88, Nfkb, Tnfα and Il6). Moreover, the activities of hepatic lipid synthesis enzymes (fatty acid synthase and phosphatidate phosphohydrolase) and gluconeogenesis enzyme (glucose-6-phosphatase) in the esculetin group were decreased compared with the diabetic group. In addition, esculetin significantly reduced blood HbA1c, serum cytokines (TNF-α and IL-6) and chemokine (MCP-1) levels compared with the diabetic group without changing the insulin content in serum and the pancreas. Hepatic SOD activity was lower and lipid peroxidation level was higher in the diabetic group than in the normal group; however, esculetin attenuates these differences. Overall, these results demonstrated that esculetin supplementation could protect against development of non-alcoholic fatty liver in diabetes via regulation of lipids, glucose and inflammation.
Collapse
Affiliation(s)
- Ra-Yeong Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Ju Ri Ham
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, 57922, Republic of Korea.
| |
Collapse
|
18
|
Esculetin attenuates lipopolysaccharide (LPS)-induced neuroinflammatory processes and depressive-like behavior in mice. Physiol Behav 2016; 163:184-192. [DOI: 10.1016/j.physbeh.2016.04.051] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 12/26/2022]
|
19
|
Kadakol A, Pandey A, Goru SK, Malek V, Gaikwad AB. Insulin sensitizing and cardioprotective effects of Esculetin and Telmisartan combination by attenuating Ang II mediated vascular reactivity and cardiac fibrosis. Eur J Pharmacol 2015; 765:591-7. [DOI: 10.1016/j.ejphar.2015.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
|
20
|
Kim SW, Park TJ, Chaudhari HN, Choi JH, Choi JY, Kim YJ, Choi MS, Yun JW. Hepatic proteome and its network response to supplementation of an anti-obesity herbal mixture in diet-induced obese mice. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0258-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Kadakol A, Malek V, Goru SK, Pandey A, Gaikwad AB. Esculetin reverses histone H2A/H2B ubiquitination, H3 dimethylation, acetylation and phosphorylation in preventing type 2 diabetic cardiomyopathy. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|