1
|
James A, Akash K, Sharma A, Bhattacharyya S, Sriamornsak P, Nagraik R, Kumar D. Himalayan flora: targeting various molecular pathways in lung cancer. Med Oncol 2023; 40:314. [PMID: 37787816 DOI: 10.1007/s12032-023-02171-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The fatal amplification of lung cancer across the globe and the limitations of current treatment strategies emphasize the necessity for substitute therapeutics. The incorporation of phyto-derived components in chemo treatment holds promise in addressing those challenges. Despite the significant progressions in lung cancer therapeutics, the complexities of molecular mechanism and pathways underlying this disease remain inadequately understood, necessitating novel biomarker targeting. The Himalayas, abundant in diverse plant varieties with established chemotherapeutic potential, presents a promising avenue for investigating potential cures for lung carcinoma. The vast diversity of phytocompounds herein can be explored for targeting the disease. This review delves into the multifaceted targets of lung cancer and explores the established phytochemicals with their specific molecular targets. It emphasizes comprehending the intricate pathways that govern effective therapeutic interventions for lung cancer. Through this exploration of Himalayan flora, this review seeks to illuminate potential breakthroughs in lung cancer management using natural compounds. The amalgamation of Himalayan plant-derived compounds with cautiously designed combined therapeutic approaches such as nanocarrier-mediated drug delivery and synergistic therapy offers an opportunity to redefine the boundaries of lung cancer treatment by reducing the drug resistance and side effects and enabling an effective targeted delivery of drugs. Furthermore, additional studies are obligatory to understand the possible derivation of natural compounds used in current lung cancer treatment from plant species within the Himalayan region.
Collapse
Affiliation(s)
- Abija James
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - K Akash
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Avinash Sharma
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Beibei, 400715, Chongqing, People's Republic of China
- Department of Sciences, Nirma University, Ahmedabad, Gujarat, 382481, India
| | | | - Rupak Nagraik
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| |
Collapse
|
2
|
Zubair T, Bandyopadhyay D. Small Molecule EGFR Inhibitors as Anti-Cancer Agents: Discovery, Mechanisms of Action, and Opportunities. Int J Mol Sci 2023; 24:ijms24032651. [PMID: 36768973 PMCID: PMC9916655 DOI: 10.3390/ijms24032651] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Epidermal growth factor receptors (EGFRs) are a class of receptor tyrosine kinase that are also called ErbB1 and HER1. EGFR tyrosine kinase activity inhibition is considered a promising therapeutic strategy for the treatment of cancer. Many small-molecule inhibitors of EGFR tyrosine kinase (EGFR-TK), from medicinally privileged molecules to commercial drugs, have been overviewed. Particular attention has been paid to the structure of the molecule and its mechanism of action if reported. Subsequent classification of the molecules under discussion has been carried out. Both natural and synthetic and reversible and irreversible EGFR-tyrosine kinase inhibitors have been discussed. Various types of cancers that are caused by overexpression of the EGFR gene, their possible molecular origins, and their natures have also been counted in this article. Because the EGFR signaling pathway controls the proliferation, growth, survival, and differentiation of cells, and the mutated EGFR gene overproduces EGFR protein, which ultimately causes several types of cancer, proper understanding of the molecular dynamics between the protein structure and its inhibitors will lead to more effective and selective EGFR-TKIs, which in turn will be able to save more lives in the battle against cancer.
Collapse
Affiliation(s)
- Tanzida Zubair
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- Correspondence:
| |
Collapse
|
3
|
Pai JT, Chen XH, Leu YL, Weng MS. Propolin G-Suppressed Epithelial-to-Mesenchymal Transition in Triple-Negative Breast Cancer Cells via Glycogen Synthase Kinase 3β-Mediated Snail and HDAC6-Regulated Vimentin Degradation. Int J Mol Sci 2022; 23:ijms23031672. [PMID: 35163593 PMCID: PMC8835855 DOI: 10.3390/ijms23031672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer with a poor prognosis. The incidence and mortality rate of TNBC are frequently found in younger women. Due to the absence of a good therapeutic strategy, effective remedies for inhibiting TNBC have been developed for improving the cure rate. Epithelial-to-mesenchymal transition (EMT) is a critical mechanism to regulate cancer cell motility and invasion. Furthermore, ectopic expression of EMT molecules correlates with the metastasis and poor prognosis of TNBC. Targeting EMT might be a strategy for the therapy and prevention of TNBC. Propolin G, an active c-prenylflavanone in Taiwanese propolis, has been shown to possess anti-cancer activity in many cancers. However, the anti-metastasis activity of propolin G on TNBC is still unclear. The present study showed that the migration and invasion activities of TNBC cells was suppressed by propolin G. Down-regulated expression of Snail and vimentin and up-regulated expression of E-cadherin were dose- and time-dependently observed in propolin G-treated MDA-MB-231 cells. Propolin G inhibited Snail and vimentin expressions via the signaling pathways associated with post-translational modification. The activation of glycogen synthase kinase 3β (GSK-3β) by propolin G resulted in increasing GSK-3β interaction with Snail. Consequently, the nuclear localization and stability of Snail was disrupted resulting in promoting the degradation. Propolin G-inhibited Snail expression and the activities of migration and invasion were reversed by GSK-3β inhibitor pretreatment. Meanwhile, the outcomes also revealed that histone deacetylase 6 (HDAC6) activity was dose-dependently suppressed by propolin G. Correspondently, the amounts of acetyl-α-tubulin, a down-stream substrate of HDAC6, were increased. Dissociation of HDAC6/Hsp90 with vimentin leading to increased vimentin acetylation and degradation was perceived in the cells with the addition of propolin G. Moreover, up-regulated expression of acetyl-α-tubulin by propolin G was attenuated by HDAC6 overexpression. On the contrary, down-regulated expression of vimentin, cell migration and invasion by propolin G were overturned by HDAC6 overexpression. Conclusively, restraint cell migration and invasion of TNBC by propolin G were activated by the expression of GSK-3β-suppressed Snail and the interruption of HDAC6-mediated vimentin protein stability. Aiming at EMT, propolin G might be a potential candidate for TNBC therapy.
Collapse
Affiliation(s)
- Jih-Tung Pai
- Division of Hematology and Oncology, Tao-Yuan General Hospital, Ministry of Health and Welfare, Taoyuan City 33004, Taiwan;
| | - Xing-Han Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan;
- Tissue Bank, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33342, Taiwan
| | - Meng-Shih Weng
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- Correspondence: ; Tel.: +886-2-2905-3776; Fax: +886-2-2902-1215
| |
Collapse
|
4
|
Liang Y, Zhang T, Zhang J. Natural tyrosine kinase inhibitors acting on the epidermal growth factor receptor: Their relevance for cancer therapy. Pharmacol Res 2020; 161:105164. [PMID: 32846211 DOI: 10.1016/j.phrs.2020.105164] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor receptor (EGFR), also known as ErbB-1/HER-1, plays a key role in the regulation of the cell proliferation, migration, differentiation, and survival. Since the constitutive activation or overexpression of EGFR is nearly found in various cancers, the applications focused on EGFR are the most widely used in the clinical level, including the therapeutic drugs of targeting EGFR, monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs).Over the past decades, the compounds from natural sources have been a productive source of novel drugs, especially in both discovery and development of anti-tumor drugs by targeting the EGFR pathways as the TKIs. This work presents a review of the compounds from natural sources as potential EGFR-TKIs involved in the regulation of cancer. Moreover, high-throughput drug screening of EGFR-TKIs from the natural compounds has also been summarized.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
5
|
Chi Z, Le TPH, Lee SK, Guo E, Kim D, Lee S, Seo SY, Lee SY, Kim JH, Lee SY. Honokiol ameliorates angiotensin II-induced hypertension and endothelial dysfunction by inhibiting HDAC6-mediated cystathionine γ-lyase degradation. J Cell Mol Med 2020; 24:10663-10676. [PMID: 32755037 PMCID: PMC7521302 DOI: 10.1111/jcmm.15686] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Hypertension and endothelial dysfunction are associated with various cardiovascular diseases. Hydrogen sulphide (H2S) produced by cystathionine γ‐lyase (CSE) promotes vascular relaxation and lowers hypertension. Honokiol (HNK), a natural compound in the Magnolia plant, has been shown to retain multifunctional properties such as anti‐oxidative and anti‐inflammatory activities. However, a potential role of HNK in regulating CSE and hypertension remains largely unknown. Here, we aimed to demonstrate that HNK co‐treatment attenuated the vasoconstriction, hypertension and H2S reduction caused by angiotensin II (AngII), a well‐established inducer of hypertension. We previously found that histone deacetylase 6 (HDAC6) mediates AngII‐induced deacetylation of CSE, which facilitates its ubiquitination and proteasomal degradation. Our current results indicated that HNK increased endothelial CSE protein levels by enhancing its stability in a sirtuin‐3‐independent manner. Notably, HNK could increase CSE acetylation levels by inhibiting HDAC6 catalytic activity, thereby blocking the AngII‐induced degradative ubiquitination of CSE. CSE acetylation and ubiquitination occurred mainly on the lysine 73 (K73) residue. Conversely, its mutant (K73R) was resistant to both acetylation and ubiquitination, exhibiting higher protein stability than that of wild‐type CSE. Collectively, our findings suggested that HNK treatment protects CSE against HDAC6‐mediated degradation and may constitute an alternative for preventing endothelial dysfunction and hypertensive disorders.
Collapse
Affiliation(s)
- Zhexi Chi
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Truc Phan Hoang Le
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea
| | - Sang Ki Lee
- Department of Sport Science, Chungnam National University, Daejeon, Korea
| | - Erling Guo
- Department of Sport Science, Chungnam National University, Daejeon, Korea
| | - Dongsoo Kim
- Department of Anesthesiology and Pain Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Sanha Lee
- College of Pharmacy, Gachon University, Incheon, Korea
| | | | - Sook Young Lee
- Department of Anesthesiology and Pain Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Jae Hyung Kim
- Department of Anesthesiology and Pain Medicine, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - Sang Yoon Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
6
|
Pai JT, Hsu CY, Hsieh YS, Tsai TY, Hua KT, Weng MS. Suppressing migration and invasion of H1299 lung cancer cells by honokiol through disrupting expression of an HDAC6-mediated matrix metalloproteinase 9. Food Sci Nutr 2020; 8:1534-1545. [PMID: 32180962 PMCID: PMC7063368 DOI: 10.1002/fsn3.1439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/30/2022] Open
Abstract
Metastasis is the crucial mechanism to cause high mortality in lung cancer. Degradation of extracellular matrix (ECM) by proteolytic enzymes, especially matrix metalloproteinases (MMPs), is a key process for promoting cancer cell migration and invasion. Therefore, targeting MMPs might be a strategy for lung cancer metastasis suppression. Honokiol, a biological active component of Magnolia officinalis, has been indicated to suppress lung cancer tumorigenesis through epigenetic regulation. However, the regulation of MMPs‐mediated migration and invasion by honokiol through epigenetic regulation in lung cancer is still a mystery. In the present study, the migration and invasion ability of H1299 lung cancer was suppressed by noncytotoxic concentrations of honokiol treatment. The proteolytic activity of MMP‐9, rather than MMP‐2, was inhibited in honokiol‐treated H1299 cells. Honokiol‐inhibited MMP‐9 expression was through promoting MMP‐9 protein degradation rather than suppressing transcription mechanism. Furthermore, the expression of specific histone deacetylases 6 (HDAC6) substrate, acetyl‐α‐tubulin, was accumulated after honokiol incubation. The disassociation of MMP‐9 with hyper‐acetylated heat shock protein 90 (Hsp90) was observed resulting in MMP‐9 degradation after honokiol treatment. Meanwhile, honokiol‐suppressed MMP‐9 expression and invasion ability of H1299 lung cancer cells was rescued by HDAC6 overexpression. Accordingly, the results suggested that the suppression of migration and invasion activities by honokiol was through inhibiting HDAC6‐mediated Hsp90/MMP‐9 interaction and followed by MMP‐9 degradation in lung cancer.
Collapse
Affiliation(s)
- Jih-Tung Pai
- Division of Hematology and Oncology Tao-Yuan General Hospital Ministry of Health and Welfare Taoyuan City Taiwan
| | - Chia-Yun Hsu
- Department of Nutritional Science Fu Jen Catholic University New Taipei city Taiwan
| | - Yei-San Hsieh
- Department of Chest Surgery Tao-Yuan General Hospital Ministry of Health and Welfare Taoyuan City Taiwan
| | - Tsung-Yu Tsai
- Department of Food Science Fu Jen Catholic University New Taipei City Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology College of Medicine National Taiwan University Taipei Taiwan
| | - Meng-Shih Weng
- Department of Nutritional Science Fu Jen Catholic University New Taipei city Taiwan
| |
Collapse
|
7
|
Ong CP, Lee WL, Tang YQ, Yap WH. Honokiol: A Review of Its Anticancer Potential and Mechanisms. Cancers (Basel) 2019; 12:E48. [PMID: 31877856 PMCID: PMC7016989 DOI: 10.3390/cancers12010048] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is characterised by uncontrolled cell division and abnormal cell growth, which is largely caused by a variety of gene mutations. There are continuous efforts being made to develop effective cancer treatments as resistance to current anticancer drugs has been on the rise. Natural products represent a promising source in the search for anticancer treatments as they possess unique chemical structures and combinations of compounds that may be effective against cancer with a minimal toxicity profile or few side effects compared to standard anticancer therapy. Extensive research on natural products has shown that bioactive natural compounds target multiple cellular processes and pathways involved in cancer progression. In this review, we discuss honokiol, a plant bioactive compound that originates mainly from the Magnolia species. Various studies have proven that honokiol exerts broad-range anticancer activity in vitro and in vivo by regulating numerous signalling pathways. These include induction of G0/G1 and G2/M cell cycle arrest (via the regulation of cyclin-dependent kinase (CDK) and cyclin proteins), epithelial-mesenchymal transition inhibition via the downregulation of mesenchymal markers and upregulation of epithelial markers. Additionally, honokiol possesses the capability to supress cell migration and invasion via the downregulation of several matrix-metalloproteinases (activation of 5' AMP-activated protein kinase (AMPK) and KISS1/KISS1R signalling), inhibiting cell migration, invasion, and metastasis, as well as inducing anti-angiogenesis activity (via the down-regulation of vascular endothelial growth factor (VEGFR) and vascular endothelial growth factor (VEGF)). Combining these studies provides significant insights for the potential of honokiol to be a promising candidate natural compound for chemoprevention and treatment.
Collapse
Affiliation(s)
| | | | - Yin Quan Tang
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, No. 1, Jalan Taylor’s, Subang Jaya 47500, Malaysia; (C.P.O.); (W.L.L.)
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, No. 1, Jalan Taylor’s, Subang Jaya 47500, Malaysia; (C.P.O.); (W.L.L.)
| |
Collapse
|
8
|
Lee PJ, Tsai TY, Chen S. Analysis of NO-suppressing activity of Strawberry Wine supplemented with ball-milled achenes. Journal of Food Science and Technology 2018; 55:1285-1294. [PMID: 29606742 DOI: 10.1007/s13197-018-3039-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/17/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
Inflammation is generally thought to be involved in the development of several chronical diseases, therefore, phytochemicals to modulate immune responses has attracted great interests. The objective of the present study was to evaluate the potential anti-inflammatory effects of wine supplemented using ball-milled achene on modulating NO production and inducible nitric oxide synthase (iNOS) expression. Ball-milled achenes were added in strawberry must prior to fermentation, and the wine samples were then concentrated and extracted with water and/or ethanol prior to analysis. Bioactivities of wine extracts were evaluated using the cell viability assay, cell cycle measurements, NO production and iNOS expression in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Treatments of achenes supplemented strawberry wine extract up to 100 μg/mL inhibited the proliferation of LPS-stimulated RAW264.7 cell via affecting the progression of cell cycle. Moreover, no detectable cytotoxicity in RAW264.7 cells was observed. The supplemented wine extract suppressed the action of LPS and led to a decreased NO production in stimulated cells. The inhibitory effect of the wine extract on NO production was determined to be a 25-40% decrease in the level of 25-100 μg/mL, in contrast to a 10% decrease for conventional wine samples. Additionally, an alcoholic wine extract (100 μg/mL) led to a 40.31% decrease in iNOS expression in LPS-stimulated cells, which was more effective than the same dose of tocopherol. The results show that strawberry wine supplemented with ball-milled achenes causes a substantial inhibition of NO production, and this biofunction is exerted via the down-regulation of iNOS expression.
Collapse
Affiliation(s)
- Pao-Ju Lee
- 1Ph.D. Program in Nutrition and Food Sciences, Fu Jen Catholic University, New Taipei City, 24205 Taiwan
| | - Tsung-Yu Tsai
- 1Ph.D. Program in Nutrition and Food Sciences, Fu Jen Catholic University, New Taipei City, 24205 Taiwan.,2EP 305, Department of Food Science, Fu Jen Catholic University, # 510 Chungcheng Road, Hsinchuan District, New Taipei City, 24205 Taiwan
| | - Shaun Chen
- 1Ph.D. Program in Nutrition and Food Sciences, Fu Jen Catholic University, New Taipei City, 24205 Taiwan.,2EP 305, Department of Food Science, Fu Jen Catholic University, # 510 Chungcheng Road, Hsinchuan District, New Taipei City, 24205 Taiwan
| |
Collapse
|
9
|
Yang J, Wu W, Wen J, Ye H, Luo H, Bai P, Tang M, Wang F, Zheng L, Yang S, Li W, Peng A, Yang L, Wan L, Chen L. Liposomal honokiol induced lysosomal degradation of Hsp90 client proteins and protective autophagy in both gefitinib-sensitive and gefitinib-resistant NSCLC cells. Biomaterials 2017; 141:188-198. [DOI: 10.1016/j.biomaterials.2017.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
|
10
|
Wessel SW, van der Mei HC, Slomp AM, van de Belt-Gritter B, Dodds MWJ, Busscher HJ. Self-perceived mouthfeel and physico-chemical surface effects after chewing gums containing sorbitol and Magnolia bark extract. Eur J Oral Sci 2017; 125:379-384. [PMID: 28857279 DOI: 10.1111/eos.12370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The European Food Safety Authority recognizes the contribution of sugar-free chewing gum to oral health through increased salivation, clearance of food debris, and neutralization of biofilm pH. Magnolia bark extract is a gum additive shown to reduce the prevalence of bad-breath bacteria but its effects on self-perceived mouthfeel are unknown. This paper aims to relate the effects of sorbitol-containing chewing gum, with and without Magnolia bark extract, on tooth-surface hydrophobicity and salivary-film composition with self-perceived mouthfeel. In a crossover clinical trial, volunteers chewed sorbitol-containing gum, with or without Magnolia bark extract added, three times daily during a 4-wk time period. A subset of volunteers also chewed Parafilm as a mastication control. Oral moistness and tooth smoothness were assessed using questionnaires, and intra-oral water-contact angles were measured before, immediately after, and 60 min after, chewing. Simultaneously, saliva samples were collected, placed on glass slides, and the compositions of the adsorbed film were measured using X-ray photoelectron spectroscopy. Chewing of gum, regardless of whether or not it contained Magnolia bark extract, improved self-perceived mouthfeel up to 60 min, concurrent with a more hydrophilic tooth surface and an increased amount of O1s electrons bound at 532.6 eV in salivary films. Chewing of Parafilm affected neither tooth-surface hydrophobicity nor salivary-film composition. Accordingly, adsorption of sorbitol, rather than the presence of Magnolia bark extract or increased salivation, is responsible for improved self-perceived mouthfeel.
Collapse
Affiliation(s)
- Stefan W Wessel
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Anje M Slomp
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Betsy van de Belt-Gritter
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | | | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
11
|
Wessel SW, van der Mei HC, Slomp AM, van de Belt-Gritter B, Maitra A, Dodds MW, Busscher HJ. Magnolia bark extract increases oral bacterial cell surface hydrophobicity and improves self-perceived breath freshness when added to chewing gum. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
12
|
Antimelanogenic effects of the novel melanogenic inhibitors daidzein and equol, derived from soymilk fermented with Lactobacillus plantarum strain TWK10, in B16F0 mouse melanoma cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Fan BY, Li ZR, Ma T, Gu YC, Zhao HJ, Luo JG, Kong LY. Further screening of the resin glycosides in the edible water spinach and characterisation on their mechanism of anticancer potential. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.09.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
14
|
Effects of the melanogenic inhibitor, uracil, derived from Lactobacillus plantarum TWK10-fermented soy milk on anti-melanogenesis in B16F0 mouse melanoma cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|