2
|
Boateng ID, Kuehnel L, Daubert CR, Agliata J, Zhang W, Kumar R, Flint-Garcia S, Azlin M, Somavat P, Wan C. Updating the status quo on the extraction of bioactive compounds in agro-products using a two-pot multivariate design. A comprehensive review. Food Funct 2023; 14:569-601. [PMID: 36537225 DOI: 10.1039/d2fo02520e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extraction is regarded as the most crucial stage in analyzing bioactive compounds. Nonetheless, due to the intricacy of the matrix, numerous aspects must be optimized during the extraction of bioactive components. Although one variable at a time (OVAT) is mainly used, this is time-consuming and laborious. As a result, using an experimental design in the optimization process is beneficial with few experiments and low costs. This article critically reviewed two-pot multivariate techniques employed in extracting bioactive compounds in food in the last decade. First, a comparison of the parametric screening methods (factorial design, Taguchi, and Plackett-Burman design) was delved into, and its advantages and limitations in helping to select the critical extraction parameters were discussed. This was followed by a discussion of the response surface methodologies (central composite (CCD), Doehlert (DD), orthogonal array (OAD), mixture, D-optimal, and Box-Behnken designs (BBD), etc.), which are used to optimize the most critical variables in the extraction of bioactive compounds in food, providing a sequential comprehension of the linear and complex interactions and multiple responses and robustness tests. Next, the benefits, drawbacks, and possibilities of various response surface methodologies (RSM) and some of their usages were discussed, with food chemistry, analysis, and processing from the literature. Finally, extraction of food bioactive compounds using RSM was compared to artificial neural network modeling with their drawbacks discussed. We recommended that future experiments could compare these designs (BBD vs. CCD vs. DD, etc.) in the extraction of food-bioactive compounds. Besides, more research should be done comparing response surface methodologies and artificial neural networks regarding their practicality and limitations in extracting food-bioactive compounds.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Lucas Kuehnel
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Christopher R Daubert
- College of Agriculture, Food, and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Joseph Agliata
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Wenxue Zhang
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Ravinder Kumar
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Sherry Flint-Garcia
- US Department of Agriculture, Plant Genetics Research Unit, Columbia, MO, 65211, USA
| | - Mustapha Azlin
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA.
| | - Pavel Somavat
- Food Science Program, Division of Food, Nutrition and Exercise Science, University of Missouri, 1406 E Rollins Street, Columbia, MO, 65211, USA. .,Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Mendez-Pfeiffer P, Alday E, Carreño AL, Hernández-Tánori J, Montaño-Leyva B, Ortega-García J, Valdez J, Garibay-Escobar A, Hernandez J, Valencia D, Velazquez C. Seasonality Modulates the Cellular Antioxidant Activity and Antiproliferative Effect of Sonoran Desert Propolis. Antioxidants (Basel) 2020; 9:antiox9121294. [PMID: 33348680 PMCID: PMC7765891 DOI: 10.3390/antiox9121294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
The main chemical composition and pharmacological potential of propolis from arid and semi-arid regions of the Sonoran Desert have been previously reported. Caborca propolis (CP), from an arid zone of the Sonoran Desert, has shown a polyphenolic profile that suggests a mixed plant origin, presenting poplar-type markers, as well as a 6-methoxylated flavonoid, xanthomicrol, characteristic of Asteraceae plants. In addition, CP has shown significant antioxidant properties and antiproliferative activity on cancer cells. In this study, we analyzed the influence of collection time on the chemical constitution, antiproliferative activity and protective capacity of CP against reactive oxygen species (ROS), by using HPLC–UV–diode array detection (DAD) analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-Dimethyltetrazoliumbromide (MTT) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays, as well as cellular antioxidant activity (CAA) assay on murine B-cell lymphoma M12.C3.F6 cells. HPLC–UV–DAD analyses of seasonally collected CP (one-year period) revealed quantitative differences among the most abundant CP constituents: pinocembrin, galangin, chrysin and pinobanksin-3-O-acetate. Though all seasonal samples of CP induced an antiproliferative effect in M12.C3.F6 cells, CP from autumn showed the highest inhibitory activity (IC50: 5.9 ± 0.6 µg/mL). The DPPH assay pointed out that CP collected in autumn presented the highest antioxidant potential (IC50: 58.8 ± 6.7 µg/mL), followed by winter (65.7 ± 12.2 µg/mL) and spring (67.0 ± 7.5 µg/mL); meanwhile, the summer sample showed a lesser antioxidant capacity (IC50: 98.7 ± 2.5 µg/mL). The CAA assay demonstrated that CP induced a significant protective effect against ROS production elicited by H2O2 in M12.C3.F6 cells. Pretreatment of M12.C3.F6 cells with CP from spring and autumn (25 and 50 µg/mL for 1 h) showed the highest reduction in intracellular ROS induced by H2O2 (1 and 5 mM). These results indicate that the antiproliferative effect and cellular antioxidant activity of CP are modulated by quantitative fluctuations in its polyphenolic profile due to its collection time.
Collapse
Affiliation(s)
- Pablo Mendez-Pfeiffer
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Efrain Alday
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Ana Laura Carreño
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Jorge Hernández-Tánori
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad and Irigoyen, Caborca, Sonora C.P. 83600, Mexico; (J.H.-T.); (J.O.-G.)
| | - Beatriz Montaño-Leyva
- Departamento de Investigacion y Posgrado en Alimentos, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico;
| | - Jesús Ortega-García
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad and Irigoyen, Caborca, Sonora C.P. 83600, Mexico; (J.H.-T.); (J.O.-G.)
| | - Judith Valdez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Adriana Garibay-Escobar
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
| | - Javier Hernandez
- Unidad de Servicios de Apoyo en Resolución Analítica, Universidad Veracruzana, Xalapa, Veracruz C.P. 91190, Mexico;
| | - Dora Valencia
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Av. Universidad and Irigoyen, Caborca, Sonora C.P. 83600, Mexico; (J.H.-T.); (J.O.-G.)
- Correspondence: (D.V.); (C.V.); Tel.: +52-(637)-372-65-40 (D.V.); +52-(662)-259-21-63 (C.V.); Fax: +52-(662)-259-21-63 (C.V.)
| | - Carlos Velazquez
- Department of Chemistry-Biology, University of Sonora, Blvd. Luis Encinas y Rosales s/n, Hermosillo, Sonora C.P. 83000, Mexico; (P.M.-P.); (E.A.); (A.L.C.); (J.V.); (A.G.-E.)
- Correspondence: (D.V.); (C.V.); Tel.: +52-(637)-372-65-40 (D.V.); +52-(662)-259-21-63 (C.V.); Fax: +52-(662)-259-21-63 (C.V.)
| |
Collapse
|
5
|
Caleja C, Barros L, Prieto MA, Bento A, Oliveira MBPP, Ferreira ICFR. Development of a natural preservative obtained from male chestnut flowers: optimization of a heat-assisted extraction technique. Food Funct 2019; 10:1352-1363. [PMID: 30834918 DOI: 10.1039/c8fo02234h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this work was to optimize the conditions for the extraction of phenolic compounds (PC) from male chestnut flowers using heat-assisted extraction in developing extracts rich in PC for potential industrial application as a natural ingredient. The study conditions of time (t), temperature (T), solvent (S, water-ethanol mixtures) and solid-to-liquid ratio (S/L) were optimized. The responses used were obtained from the quantification of the fourteen major individual PC identified by HPLC-DAD-ESI/MS (seven hydrolysable tannins and seven flavonoids). The recovery of hydrolysable tannins was higher than that of flavonoids, with trigalloyl-HHDP-glucoside being the major one. The conditions that maximized the PC content were t = 20.0 ± 37.7 min, T = 25.0 ± 5.7 °C, S = 0.0 ± 8.7% ethanol and S/L = 82.8 g L-1, producing an extract with 86.5 mg PC g-1 of extract. The results highlight the potential of valorising chestnut flower agro-residues as a productive source of PC for the development of bio-based ingredients for food/pharmaceutical/cosmeceutical industrial applications able to compete with synthetic compounds.
Collapse
Affiliation(s)
- Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | | | | | | | | | | |
Collapse
|
9
|
Comparative Evaluation of Total Antioxidant Capacities of Plant Polyphenols. Molecules 2016; 21:molecules21020208. [PMID: 26867192 PMCID: PMC6274360 DOI: 10.3390/molecules21020208] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/04/2022] Open
Abstract
Thirty-seven samples of naturally occurring phenolic compounds were evaluated using three common in vitro assays for total antioxidant activity (TAC) testing: the Trolox Equivalent Antioxidant Capacity (TEAC), the Ferric Reducing Antioxidant Potential (FRAP) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, in addition to the Folin-Ciocalteu reagent reactivity (FCR). We found that antioxidant hierarchies depended on the choice of assay and applied ANOVA analyses to explore underlying structure-TAC dependencies. In addition to statistically confirming the empirically established connection between flavonoid ring-B catechol and high TEAC or FRAP, new correlations were also found. In flavonoids, (i) hydroxyl groups on ring-B had a positive effect on all four TAC assays; (ii) the presence of a 3-hydroxyl group on ring-C increased TEAC and FRAP, but had no effect on DPPH or FCR; (iii) Phenolic acids lacking a 3-hydroxyl group had significantly lower FRAP or DPPH than compounds having this structure, while TEAC or FCR were not affected. Results demonstrated that any TAC-based ranking of phenolic rich samples would very much depend on the choice of assay, and argue for use of more than one technique. As an illustration, we compared results of the above four assays using either grapevine leaf extracts or synthetic mixtures of compounds prepared according to major polyphenols identified in the leaves.
Collapse
|