1
|
Chen X, Xu B. Insights into chemical components, health-promoting effects, and processing impact of golden chanterelle mushroom Cantharellus cibarius. Food Funct 2024; 15:7696-7732. [PMID: 38967456 DOI: 10.1039/d4fo00891j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Cantharellus cibarius (CC) is a culinary mushroom with significant commercial potential due to its diverse components and bioactive functions. CC is rich in carbohydrates, proteins, minerals, vitamins, and aroma compounds while being low in fat and calories. Moreover, CC contains an abundance of bioactive substances including phenolic compounds, vitamin precursors, and indole derivatives. Numerous studies have claimed that CC has diverse functions such as antioxidant, antimicrobial, immunoregulation, anti-inflammatory, antitumor, neuroprotective, antidiabetic, and prebiotic effects in in vivo or in vitro settings. In addition, a variety of thermal, physical, chemical, and biological treatment methods have been investigated for the processing and preservation of CC. Consequently, this study aims to present a comprehensive review of the chemical composition, health benefits, and processing techniques of CC. Furthermore, the issue of heavy metal accumulation in CC has been indicated and discussed. The study highlights the potential of CC as a functional food in the future while providing valuable insights for future research and identifying areas requiring further investigation.
Collapse
Affiliation(s)
- Xinlei Chen
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
2
|
Kumla J, Suwannarach N, Liu YS, Tanruean K, Lumyong S. Survey of Edible Amanita in Northern Thailand and Their Nutritional Value, Total Phenolic Content, Antioxidant and α-Glucosidase Inhibitory Activities. J Fungi (Basel) 2023; 9:343. [PMID: 36983511 PMCID: PMC10058571 DOI: 10.3390/jof9030343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Edible wild mushrooms are extremely popular among consumers and are highly valued for their potential economic benefits in northern Thailand. In this present study, a total of 19 specimens of edible Amanita were collected during investigations of wild edible mushrooms in northern Thailand during the period from 2019 to 2022. Their morphological characteristics and the phylogenetic analyses of the internal transcribed spacer (ITS) and partial large subunit (nrLSU) of ribosomal RNA, RNA polymerase II second-largest subunit (rpb2) and partial translation elongation factor 1-alpha (tef-1) indicated that the collected specimens belonged to A. hemibapha, A. pseudoprinceps, A. rubromarginata, A. subhemibapha, and Amanita section Caesareae. This is the first report of A. pseudoprinceps and A. subhemibapha from Thailand. Full descriptions, illustrations and a phylogenetic placement of all specimens collected in this study are provided. Subsequently, the nutritional composition and total phenolic content, as well as the antioxidant and α-glucosidase inhibitory activities, of each species were investigated. The results indicate that the protein contents in both A. pseudoprinceps and A. subhemibapha were significantly higher than in A. hemibapha and A. rubromarginata. The highest total phenolic content was found in the extract of A. pseudoprinceps. In terms of antioxidant properties, the extract of A. pseudoprinceps also exhibited significantly high antioxidant activity by 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. However, the extract of A. rubromarginata had the lowest total phenolic content and level of antioxidant activity. Additionally, α-glucosidase inhibitory activity varied for different Amanita species and the highest level of α-glucosidase inhibitory activity was found in the extract of A. pseudoprinceps. This study provides valuable information on the nutrient content, phenolic content and the antioxidant and α-glucosidase inhibitory potential of edible Amanita species found in northern Thailand.
Collapse
Affiliation(s)
- Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yuan S. Liu
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Keerati Tanruean
- Biology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
3
|
Ravikrishnan V, Sridhar KR, Rajashekhar M. Bioactive Profile of the Wild Mushroom Trogia cantharelloides. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Yadav D, Negi PS. Bioactive components of mushrooms: Processing effects and health benefits. Food Res Int 2021; 148:110599. [PMID: 34507744 DOI: 10.1016/j.foodres.2021.110599] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Mushrooms have been recognized for their culinary attributes for long and were relished in the most influential civilizations in history. Currently, they are the focus of renewed research because of their therapeutic abilities. Nutritional benefits from mushrooms are in the form of a significant source of essential proteins, dietary non-digestible carbohydrates, unsaturated fats, minerals, as well as various vitamins, which have enhanced its consumption, and also resulted in the development of various processed mushroom products. Mushrooms are also a crucial ingredient in traditional medicine for their healing potential and curative properties. The literature on the nutritional, nutraceutical, and therapeutic potential of mushrooms, and their use as functional foods for the maintenance of health was reviewed, and the available literature indicates the enormous potential of the bioactive compounds present in mushrooms. Future research should be focused on the development of processes to retain the mushroom bioactive components, and valorization of waste generated during processing. Further, the mechanisms of action of mushroom bioactive components should be studied in detail to delineate their diverse roles and functions in the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Divya Yadav
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetables Technology, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
5
|
Lin S, Wang P, Lam KL, Hu J, Cheung PCK. Research on a Specialty Mushroom ( Pleurotus tuber-regium) as a Functional Food: Chemical Composition and Biological Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9277-9286. [PMID: 32786828 DOI: 10.1021/acs.jafc.0c03502] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pleurotus tuber-regium (PTR) is an edible specialty mushroom that has attracted growing interest recently because of its sensory attributes, high nutritional values, and important medicinal properties. PTR is rich in bioactive polysaccharides, proteins with essential amino acids, essential fatty acids, dietary fiber, minerals, and vitamins. Current studies have shown that the nutrients and bioactive ingredients of PTR contribute to their antitumor, antihypercholesterolemic, antihypertensive, antiobesity, hepatic-protective, antimicrobial, antioxidant, and prebiotic activities, indicating that PTR is a promising functional food and nutraceutical. In this review, the chemical constituents and physiological functions of PTR are summarized, which provide the scientific basis to support the further research and development of its application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Shaoling Lin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, People's Republic of China
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Peixin Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, People's Republic of China
| | - Ka-Lung Lam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, People's Republic of China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
6
|
Lu H, Lou H, Hu J, Liu Z, Chen Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr Rev Food Sci Food Saf 2020; 19:2333-2356. [DOI: 10.1111/1541-4337.12602] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Hanghang Lou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Jingjin Hu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Zhengjie Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Qihe Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| |
Collapse
|
7
|
Hu J, Lin S, Huang JJ, Cheung PCK. Mechanistic Study of the In Vitro and In Vivo Inhibitory Effects of Protocatechuic Acid and Syringic Acid on VEGF-Induced Angiogenesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6742-6751. [PMID: 29886729 DOI: 10.1021/acs.jafc.8b01534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The antiangiogenic activities of two structurally similar phenolics, protocatechuic acid (PA) and syringic acid (SA), were investigated. In vitro study using HUVECs demonstrated that both PA and SA (at 25 μM) significantly ( p < 0.05) inhibited VEGF-induced cell proliferation by 22.68 ± 5.6% and 21.93 ± 2.0%, respectively; cell migration by 50.04 ± 3.3% and 39.72 ± 4.7%, respectively; cell invasion by 44.16 ± 4.23% and 51.90 ± 2.73%, respectively; and cellular ROS generation by 11.48 ± 6.32% and 21.17 ± 9.10%, respectively. Our mechanistic study revealed that PA and SA blocked the VEGFR2-dependent Akt/ MMP2 and ERK pathways in HUVECs. These inhibitory effects were further confirmed by a decrease of endogenous alkaline phosphatase activity for PA and SA (21.47 ± 1.77% and 10.37 ± 1.27%, respectively) and the suppression of subintestinal vessel plexus formation in Tg (fli1a:EGFP) y1-type transgenic zebrafish embryos. PA and SA down-regulated the angiogenesis-related signal transduction pathway of VEGFα-VEGFR2 or Ang2- Tie2 in zebrafish. Moreover, it was also found that PA demonstrated a better inhibition on VEGF-induced migration of HUVEC and zebrafish vasculature. This might be due to the different number of hydroxyl and methoxy substituents possessed by PA and SA. Taken together, these findings indicate that phenolics PA and SA have potent antiangiogenic activities and are potential targets for the design and development of anticancer agents.
Collapse
Affiliation(s)
- Jiamiao Hu
- College of Food Science , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
| | - Shaoling Lin
- College of Food Science , Fujian Agriculture and Forestry University , Fuzhou 350002 , China
- School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong, China
| | - Jim Junhui Huang
- Environmental Research Institute , National University of Singapore , 5 Science Drive 2 , Singapore 117597 , Republic of Singapore
| | - Peter C K Cheung
- School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong, China
| |
Collapse
|
8
|
Ribeiro A, Abreu RM, Dias MM, Barreiro MF, Ferreira IC. Antiangiogenic compounds: well-established drugs versus emerging natural molecules. Cancer Lett 2018; 415:86-105. [DOI: 10.1016/j.canlet.2017.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/17/2017] [Accepted: 12/01/2017] [Indexed: 12/19/2022]
|
9
|
Polyphenolic composition and antioxidant, antiproliferative, and antimicrobial activities of mushroom Inonotus sanghuang. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.04.041] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Liang N, Li Y, Chung HY. Two natural eudesmane-type sesquiterpenes from Laggera alata inhibit angiogenesis and suppress breast cancer cell migration through VEGF- and Angiopoietin 2-mediated signaling pathways. Int J Oncol 2017; 51:213-222. [PMID: 28534941 DOI: 10.3892/ijo.2017.4004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/28/2017] [Indexed: 11/06/2022] Open
Abstract
Eudesmane-type sesquiterpenes are natural sesquiterpenes with anti-inflammatory properties, but their anti-angiogenic activities are not known. The present study demonstrated that 5α-hydroxycostic acid and hydroxyisocostic acid, two eudesmane-type sesquiterpenes (ETSs), isolated from the herb Laggera alata, possessed anti-angiogenic effects. Under non-toxic dosage, ETSs suppressed VEGF‑induced proliferation in human umbilical vein endothelial cells (HUVECs) and vessel formation in zebrafish embryos. Moreover, ETSs inhibited VEGF-stimulated HUVEC migration, stress fibers and tube formation. Results from real‑time PCR analysis involving in vivo and in vitro experiments indicated that pro-angiogenic-related mRNA levels were downregulated, including VEGFA, VEGFR2 and Tie2 genes after ETS treatments. Western blot analysis showed that ETSs suppressed VEGF-stimulated VEGFR2 phosphorylation and activation of its downstream molecules, such as Src/AKT/eNOS, FAK, PLCγ/ERK1/2 and p38. Moreover, the VEGF-stimulation of angiopoietin 2 (Ang2) mRNA level increase was significantly downregulated in the presence of ETSs. ETSs inhibited Ang2-induced phosphorylation of the receptor Tie2 in HUVECs, which indicated that ETSs not just suppressed VEGF/VEGFR2 axis, but also the Ang2/Tie2 one. Furthermore, the wound-healing assay revealed that ETSs reduced the migration of Ang2-stimulated human breast cancer (MCF-7) cells. Mechanistically, the anti-migration effect of ETSs correlated with the blockade of Ang2-induced E-cadherin loss and AKT activation. Collectively, the present study suggests that ETSs possess anti-angiogenic ability by interfering the VEGF- and Ang2-related pathways, and they may be good drug candidates.
Collapse
Affiliation(s)
- Ning Liang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, SAR, P.R. China
| | - Yaolan Li
- Institute of Traditional Chinese Medicine and Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, Guangdong, P.R. China
| | - Hau Yin Chung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, SAR, P.R. China
| |
Collapse
|
11
|
Lin S, Hu J, Zhou X, Cheung PC. Inhibition of vascular endothelial growth factor-induced angiogenesis by chlorogenic acid via targeting the vascular endothelial growth factor receptor 2-mediated signaling pathway. J Funct Foods 2017; 32:285-295. [DOI: 10.1016/j.jff.2017.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
12
|
Lin S, Ching LT, Lam K, Cheung PC. Anti-angiogenic effect of water extract from the fruiting body of Agrocybe aegerita. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.08.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Liao W, Chen L, Ma X, Jiao R, Li X, Wang Y. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells. Eur J Med Chem 2016; 114:24-32. [PMID: 26974372 DOI: 10.1016/j.ejmech.2016.02.045] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/01/2016] [Accepted: 02/18/2016] [Indexed: 12/20/2022]
Abstract
The protective effects of kaempferol against reactive oxygen species (ROS)-induced hemolysis and its antiproliferative activity on human cancer cells were evaluated in this study. Kaempferol exhibited strong cellular antioxidant ability (CAA) with a CAA value of 59.80 ± 0.379 μM of quercetin (QE)/100 μM (EC50 = 7.74 ± 0.049 μM). Pretreatment with kaempferol significantly attenuated the ROS-induced hemolysis of human erythrocyte (87.4% hemolysis suppressed at 100 μg/mL) and reduced the accumulation of toxic lipid peroxidation product malondialdehyde (MDA). The anti-hemolytic activity of kaempferol was mainly through scavenging excessive ROS and preserving the intrinsic antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx) activities in normal levels. Additionally, kaempferol showed significant antiproliferative activity on a panel of human cancer cell lines including human breast carcinoma (MCF-7) cells, human stomach carcinoma (SGC-7901) cells, human cervical carcinoma (Hela) cells and human lung carcinoma (A549) cells. Kaemperol induced apoptosis of MCF-7 cells accompanied with nuclear condensation and mitochondria dysfunction.
Collapse
Affiliation(s)
- Wenzhen Liao
- Department of Food Science and Engineering, Jinan University, 601 West, Huangpu Road, Guangzhou, 510632, China; College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, 510640, China
| | - Luying Chen
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou, 510640, China
| | - Xiang Ma
- Research School of Chemistry, The Australian National University, Canberra ACT 2601, Australia
| | - Rui Jiao
- Department of Food Science and Engineering, Jinan University, 601 West, Huangpu Road, Guangzhou, 510632, China
| | - Xiaofeng Li
- Department of Food Science and Engineering, Jinan University, 601 West, Huangpu Road, Guangzhou, 510632, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, 601 West, Huangpu Road, Guangzhou, 510632, China.
| |
Collapse
|