1
|
Wang J, Zhang H, Wu L, Lu D. Sacubitril/valsartan mitigated intermittent hypoxia related intestinal microbiota alteration and aortic injury. Sleep Breath 2023; 27:1769-1777. [PMID: 36719525 DOI: 10.1007/s11325-023-02781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/22/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To investigate the influence of sacubitril valsartan sodium (SVS) on chronic intermittent hypoxia (IH) related gut microbiome composition alteration and aortic injury. METHODS Experiments were performed using SD rats, which were divided into three groups: control, IH, and SVS group. O2 concentration was decreased to 7-8% at nadir approximately every 3 min in IH group (8 h per day for 6 weeks) or was left unchanged in control group. Rats in SVS group were orally gavaged with SVS at the dosage of 30 mg/kg/day (2 weeks after chronic IH exposure). At week 6, fecal and aortic samples were harvested for 16 s rDNA analysis and histological analysis, respectively. RESULTS Principal coordinate analysis and non-metric multidimensional scaling analysis indicated that the bacterial community was altered by chronic IH exposure, while SVS treatment restored the intestinal microbial communities. Further analysis showed that IH decreased the relative abundance of Lactobacillus and Prevotella, while rats treated with SVS was enriched with Firmicutes, Bacilli, Prevotellaceae, and Lactobacillus, which was similar to control rats. Immunohistochemical staining showed that SVS prevented the upregulation of transforming growth factor-β1 and tumor necrosis factor-alpha in the aorta. CONCLUSION SVS prevented aortic adverse response to IH, possibly through modulating intestinal microbiota.
Collapse
Affiliation(s)
- Jinfeng Wang
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui Province, China
| | - Hongxiang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, 10# Kangfu Road, Wuhu, 241000, Anhui Province, China
- Vascular Diseases Research Center of Wannan Medical College, Wuhu, China
| | - LiJuan Wu
- Department of Otolaryngology-Head and Neck Surgery, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Dasheng Lu
- Department of Cardiology, The Second Affiliated Hospital of Wannan Medical College, 10# Kangfu Road, Wuhu, 241000, Anhui Province, China.
- Translational Medicine Center of the Second Hospital Affiliated Wannan Medical College & Pathogens Detection Engineering Center of Wuhu, Wuhu, China.
| |
Collapse
|
2
|
Othman ZA, Zakaria Z, Suleiman JB, Mustaffa KMF, Jalil NAC, Wan Ghazali WS, Zulkipli NN, Mohamed M. Orlistat Mitigates Oxidative Stress-Linked Myocardial Damage via NF-κβ- and Caspase-Dependent Activities in Obese Rats. Int J Mol Sci 2022; 23:ijms231810266. [PMID: 36142178 PMCID: PMC9499462 DOI: 10.3390/ijms231810266] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Oxidative stress contributes to major complications of obesity. This study intended to identify whether orlistat could mitigate myocardial damage in obese animal models. The tested rats were divided into two groups and fed either with normal chow (n = 6 per group) or with a high-fat diet (HFD) for 6 weeks to induce obesity (n = 12 per group). Obese rats were further subjected to treatment either with distilled water (OB group) or orlistat 10 mg/kg/day (OB + OR group). Key indices of oxidative stress, inflammation, and apoptosis were assessed using an immunohistochemical-based technique and real-time PCR. The OB group showed significant increases of oxidative stress markers (TBARs and PCO), with significant decreases of anti-oxidant markers (Nrf2, SOD, CAT, and GPx). Furthermore, mRNA expression of pro-inflammatory markers (TNF-α and NF-κβ) and pro-apoptosis markers (Bax, Caspase-3, Caspase-8, and Caspase-9) were significantly upregulated in the OB group. Obese rats developed pathological changes of myocardial damages as evidenced by the presence of myocardial hypertrophy and inflammatory cells infiltration. Orlistat dampened the progression of myocardial damage in obese rats by ameliorating the oxidative stress, and by inhibiting NF-κβ pathway and caspase-dependent cell apoptosis. Our study proposed that orlistat could potentially mitigate oxidative stress-linked myocardial damage by mitigating inflammation and apoptosis, thus rationalizing its medical usage.
Collapse
Affiliation(s)
- Zaidatul Akmal Othman
- Unit of Physiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Joseph Bagi Suleiman
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana P.M.B. 1007, Afikpo, Ebonyi State, Nigeria
| | - Khairul Mohd Fadzli Mustaffa
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nur Asyilla Che Jalil
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Wan Syaheedah Wan Ghazali
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ninie Nadia Zulkipli
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: ; Tel.: +60-9767-6158
| |
Collapse
|
3
|
Huang Y, Wang N, Zhao H. In vivo activities of the structured lipids -1, 3-dioleic acid 2-palmitic acid triglyceride (OPO) in high-fat diet mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Chiang CJ, Tsai BCK, Lu TL, Chao YP, Day CH, Ho TJ, Wang PN, Lin SC, Padma VV, Kuo WW, Huang CY. Diabetes-induced cardiomyopathy is ameliorated by heat-killed Lactobacillus reuteri GMNL-263 in diabetic rats via the repression of the toll-like receptor 4 pathway. Eur J Nutr 2021; 60:3211-3223. [PMID: 33555373 DOI: 10.1007/s00394-020-02474-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Diabetes mellitus (DM) leads to disorders such as cardiac hypertrophy, cardiac myocyte apoptosis, and cardiac fibrosis. Previous studies have shown that Lactobacillus reuteri GMNL-263 decreases cardiomyopathy by reducing inflammation. In this study, we investigated the potential benefit of GMNL-263 supplementation in treating diabetes-induced cardiomyocytes in rats with DM. METHODS Five-week-old male Wistar rats were randomly divided into three groups, control, DM, and rats with DM treated with different dosages of L. reuteri GMNL-263. After undergoing treatment for 4 weeks, all rats were euthanized for further analysis. RESULTS We observed that cardiac function and structure of rats with DM was rescued by GMNL-263. Activation of toll-like receptor 4 (TLR4)-related inflammatory, hypertrophic, and fibrotic signaling pathways in the hearts of rats with DM was reduced by treatment with GMNL-263. CONCLUSION Our findings demonstrate that GMNL-263 inhibited diabetes-induced cardiomyocytes via the repression of the TLR4 pathway. Moreover, these findings suggest that treatment with high-dose GMNL-263 could be a precautionary therapy for reducing the diabetes-induced cardiomyopathy.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tzu-Li Lu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | | | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Pin-Ning Wang
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Sheng-Chuan Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| |
Collapse
|
6
|
Wang G, Jiao T, Xu Y, Li D, Si Q, Hao J, Zhao J, Zhang H, Chen W. Bifidobacterium adolescentis and Lactobacillus rhamnosus alleviate non-alcoholic fatty liver disease induced by a high-fat, high-cholesterol diet through modulation of different gut microbiota-dependent pathways. Food Funct 2020; 11:6115-6127. [PMID: 32573567 DOI: 10.1039/c9fo02905b] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) has increased year on year, and the increasing appreciation of the importance of gut microbiota provides novel therapeutic avenues for the treatment of NAFLD. To explore the similarities and differences between lactic acid bacteria (LAB) known to alleviate NAFLD, we selected three strains of Bifidobacterium adolescentis and three strains of Lactobacillus rhamnosus to administer to C57BL/6J mice on a high-fat, high-cholesterol diet (HFHCD) for 23 weeks. Subsequently, the effects of the LAB were evaluated through various measures. The six LAB strains were found to have varying degrees of efficacy in the prevention of NAFLD. We found that there were interspecific and intraspecific differences in the beneficial effects, mainly with respect to energy metabolism, lipid metabolism and short-chain fatty acid concentration. Three strains of B. adolescentis and one strain of L. rhamnosus were found to relieve NAFLD by increasing the concentration of short-chain fatty acids in the intestine of NAFLD mice. The other two strains of L. rhamnosus, LGG and L10-1, relieved NAFLD through different ways, LGG modulated energy metabolism and lipid metabolism, and L10-1 reduced liver inflammation. Examination of gut microbiota indicated that the six LAB strains could block the HFHCD-induced elevation of Firmicutes/Bacteroidetes and alter the dominant species within the gut. These results suggest that B. adolescentis and L. rhamnosus can inhibit the development of NAFLD by regulating gut microbiota, and their use is thus a promising therapeutic strategy.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sefidgari-Abrasi S, Roshangar L, Karimi P, Morshedi M, Rahimiyan-Heravan M, Saghafi-Asl M. From the gut to the heart: L. plantarum and inulin administration as a novel approach to control cardiac apoptosis via 5-HT2B and TrkB receptors in diabetes. Clin Nutr 2020; 40:190-201. [PMID: 32446786 DOI: 10.1016/j.clnu.2020.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 04/23/2020] [Accepted: 05/05/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Type 2 diabetes mellitus, as a metabolic disorder, can lead to diabetic cardiomyopathy, identified by cardiomyocyte apoptosis and myocardial fibrosis. Brain-derived neurotrophic factor (BDNF) and serotonin are two neurotransmitters that can control cardiomyocyte apoptosis and myocardial fibrosis through their cardiac receptors. In the present study, we investigated the impacts of L. plantarum and inulin supplementation on the inhibition of cardiac apoptosis and fibrosis by modulating intestinal, serum, and cardiac levels of serotonin and BDNF as well as their cardiac receptors. METHODS Diabetes was induced by a high-fat diet and streptozotocin in male Wistar rats. Rats were divided into six groups and were supplemented with L. plantarum, inulin or their combination for 8 weeks. Finally, the rats were killed and levels of intestinal, serum, and cardiac parameters were evaluated. RESULTS Concurrent administration of L. plantarum and inulin caused a significant rise in the expression of cardiac serotonin and BDNF receptors (P < 0.001) as well as a significant fall in cardiac interstitial and perivascular fibrosis (P < 0.001, both) and apoptosis (P = 0.01). Moreover, there was a strong correlation of cardiac 5-Hydroxytryptamine 2B (5-HT2B) and tropomyosin receptor kinase B (TrkB) receptors with interstitial/perivascular fibrosis and apoptosis (P < 0.001, both). CONCLUSIONS/INTERPRETATION Results revealed beneficial effects of L. plantarum, inulin or their combination on intestinal, serum, and cardiac serotonin and BDNF accompanied by higher expression of their cardiac receptors and lower levels of cardiac apoptotic and fibrotic markers. It seems that L. plantarum and inulin supplementation could be considered as a novel adjunct therapy to reduce cardiac complications of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Safa Sefidgari-Abrasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Morshedi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marziyeh Rahimiyan-Heravan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saghafi-Asl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
8
|
Xavier-Santos D, Bedani R, Lima ED, Saad SMI. Impact of probiotics and prebiotics targeting metabolic syndrome. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Boricha AA, Shekh SL, Pithva SP, Ambalam PS, Manuel Vyas BR. In vitro evaluation of probiotic properties of Lactobacillus species of food and human origin. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Lactobacillus paracasei GMNL-32, Lactobacillus reuteri GMNL-89 and L. reuteri GMNL-263 ameliorate hepatic injuries in lupus-prone mice. Br J Nutr 2017; 117:1066-1074. [PMID: 28502277 DOI: 10.1017/s0007114517001039] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Probiotics are known to regulate host immunity by interacting with systemic and mucosal immune cells as well as intestinal epithelial cells. Supplementation with certain probiotics has been reported to be effective against various disorders, including immune-related diseases. However, little is known about the effectiveness of Lactobacillus paracasei GMNL-32 (GMNL-32), Lactobacillus reuteri GMNL-89 (GMNL-89) and L. reuteri GMNL-263 (GMNL-263) in the management of autoimmune diseases, especially systemic lupus erythematosus (SLE). NZB/W F1 mice, which are a lupus-prone animal model, were orally gavaged with GMNL-32, GMNL-89 or GMNL-263 to investigate the effects of these Lactobacillus strains on liver injuries in NZB/W F1 mice. The results thus obtained reveal that supplementary GMNL-32, GMNL-89 or GMNL-263 in NZB/W F1 mice ameliorates hepatic apoptosis and inflammatory indicators, such as matrix metalloproteinase-9 activity and C-reactive protein and inducible nitric oxide synthase expressions. In addition, supplementation with GMNL-32, GMNL-89 or GMNL-263 in NZB/W F1 mice reduced the expressions of hepatic IL-1β, IL-6 and TNF-α proteins by suppressing the mitogen-activated protein kinase and NF-κB signalling pathways. These findings, presented here for the first time, reveal that GMNL-32, GMNL-89 and GMNL-263 mitigate hepatic inflammation and apoptosis in lupus-prone mice and may support an alternative remedy for liver disorders in cases of SLE.
Collapse
|
11
|
Shekh SL, Dave JM, Vyas BRM. Characterization of Lactobacillus plantarum strains for functionality, safety and γ-amino butyric acid production. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.07.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|