1
|
Vieira ADS, de Souza CB, Padilha M, Zoetendal EG, Smidt H, Saad SMI, Venema K. Impact of a fermented soy beverage supplemented with acerola by-product on the gut microbiota from lean and obese subjects using an in vitro model of the human colon. Appl Microbiol Biotechnol 2021; 105:3771-3785. [PMID: 33937924 PMCID: PMC8102275 DOI: 10.1007/s00253-021-11252-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/26/2021] [Accepted: 03/21/2021] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate the effects of soy-based beverages manufactured with water-soluble soy extract, containing probiotic strains (Lactobacillus acidophilus LA-5 and Bifidobacterium longum BB-46) and/or acerola by-product (ABP) on pooled faecal microbiota obtained from lean and obese donors. Four fermented soy beverages (FSs) ("placebo" (FS-Pla), probiotic (FS-Pro), prebiotic (FS-Pre), and synbiotic (FS-Syn)) were subjected to in vitro digestion, followed by inoculation in the TIM-2 system, a dynamic in vitro model that mimics the conditions of the human colon. Short- and branched-chain fatty acids (SCFA and BCFA) and microbiota composition were determined. Upon colonic fermentation in the presence of the different FSs formulations, acetic and lactic acid production was higher than the control treatment for faecal microbiota from lean individuals (FMLI). Additionally, SCFA production by the FMLI was higher than for the faecal microbiota from obese individuals (FMOI). Bifidobacterium spp. and Lactobacillus spp. populations increased during simulated colonic fermentation in the presence of FS-Syn in the FMLI and FMOI. FS formulations also changed the composition of the FMOI, resulting in a profile more similar to the FMLI. The changes in the composition and the increase in SCFA production observed for the FMLI and FMOI during these in vitro fermentations suggest a potential modulation effect of these microbiotas by the consumption of functional FSs. KEY POINTS: • Soy beverages increased Bifidobacterium abundance in microbiota from obese individuals. • The synbiotic beverage increased Bifidobacterium abundance in microbiota from lean individuals. • The synbiotic beverage changed the microbiota from obese individuals, approaching the lean profiles.
Collapse
Affiliation(s)
- Antonio Diogo Silva Vieira
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Carlota Bussolo de Souza
- Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, Villafloraweg 1, 5928 SZ, Venlo, The Netherlands
| | - Marina Padilha
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Erwin Gerard Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Susana Marta Isay Saad
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Food Research Center FoRC, University of São Paulo (USP), Av. Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, Villafloraweg 1, 5928 SZ, Venlo, The Netherlands.
| |
Collapse
|
2
|
Jeffrey MP, MacPherson CW, Mathieu O, Tompkins TA, Green-Johnson JM. Secretome-Mediated Interactions with Intestinal Epithelial Cells: A Role for Secretome Components from Lactobacillus rhamnosus R0011 in the Attenuation of Salmonella enterica Serovar Typhimurium Secretome and TNF-α-Induced Proinflammatory Responses. THE JOURNAL OF IMMUNOLOGY 2020; 204:2523-2534. [PMID: 32238458 DOI: 10.4049/jimmunol.1901440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
Recent evidence suggests that lactic acid bacteria communicate with host cells via secretome components to influence immune responses but less is known about gut-pathogen secretomes, impact of lactic acid bacteria secretomes on host-pathogen interactions, and the mechanisms underlying these interactions. Genome-wide microarrays and cytokine profiling were used to interrogate the impact of the Lactobacillus rhamnosus R0011 secretome (LrS) on TNF-α and Salmonella enterica subsp. enterica serovar Typhimurium secretome (STS)-induced outcomes in human intestinal epithelial cells. The LrS attenuated both TNF-α- and STS-induced gene expression involved in NF-κB and MAPK activation, as well as expression of genes involved in other immune-related signaling pathways. Specifically, the LrS induced the expression of dual specificity phosphatase 1 (DUSP1), activating transcription factor 3 (ATF3), and tribbles pseudokinase 3 (TRIB3), negative regulators of innate immune signaling, in HT-29 intestinal epithelial cells challenged with TNF-α or STS. TNF-α- and STS-induced acetylation of H3 and H4 histones was attenuated by the LrS, as was the production of TNF-α- and STS-induced proinflammatory cytokines and chemokines. Interestingly, the LrS induced production of macrophage migration inhibitory factor (MIF), a cytokine involved in host-microbe interactions at the gut interface. We propose that the LrS attenuates proinflammatory mediator expression through increased transcription of negative regulators of innate immune activity and changes in global H3 and H4 histone acetylation. To our knowledge, these findings provide novel insights into the complex multifaceted mechanisms of action behind secretome-mediated interdomain communication at the gut-mucosal interface.
Collapse
Affiliation(s)
- Michael P Jeffrey
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Technical University, Oshawa, Ontario L1G 0C5, Canada; and
| | - Chad W MacPherson
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec H4P 2R2, Canada
| | - Olivier Mathieu
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec H4P 2R2, Canada
| | - Thomas A Tompkins
- Rosell Institute for Microbiome and Probiotics, Montreal, Quebec H4P 2R2, Canada
| | - Julia M Green-Johnson
- Applied Bioscience Graduate Program and the Faculty of Science, Ontario Technical University, Oshawa, Ontario L1G 0C5, Canada; and
| |
Collapse
|
3
|
Yin H, Ye P, Lei Q, Cheng Y, Yu H, Du J, Pan H, Cao Z. In vitro probiotic properties of Pediococcus pentosaceus L1 and its effects on enterotoxigenic Escherichia coli-induced inflammatory responses in porcine intestinal epithelial cells. Microb Pathog 2020; 144:104163. [PMID: 32194178 DOI: 10.1016/j.micpath.2020.104163] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/19/2023]
Abstract
This study aimed to evaluate in vitro probiotic characteristics of Pediococcus pentosaceus strain L1 from pickled radish and investigate its impacts on inflammatory responses in porcine intestinal epithelial cells (IEC) to enterotoxigenic Escherichia coli (ETEC) F4+. The abilities of P. pentosaceus L1 to tolerate gastrointestinal conditions and to antagonize ETEC F4+ growth were determined. Adhesion of P. pentosaceus L1 and its effect on ETEC F4+ adhesion to porcine IPEC-J2 IEC were evaluated. Furthermore, the effects of this strain on proinflammatory gene expression and cytokines/chemokine production in porcine IPEC-J2 IEC induced by ETEC F4+ were determined. P. pentosaceus L1 showed good tolerance to the medium adjusted at pH 2.5 and consequently supplemented with 0.3% oxgall. Reduction of ETEC F4+ growth in co-culture with L1 was found. Effective adhesion of L1 to porcine. IPEC-J2 IEC was observed under these conditions. P. pentosaceus L1 decreased the adhesion of ETEC F4+ to IPEC-J2 IEC and the extent of inhibition of ETEC F4+ adhesion depended on the timing of L1 addition. Further analysis revealed down-regulation of expression of ETEC F4+-induced proinflammatory genes encoding interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-8 (IL-8) in IPEC-J2 IEC. Expression of the genes involved in NF-κB pathway, including RELA and NFKB1, were also repressed, as was production of IL-6, TNF-α, and IL-8. These results indicate that P. pentosaceus L1 may have potential as a probiotic for control of ETEC infection in pigs.
Collapse
Affiliation(s)
- Huajuan Yin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China
| | - Pengfei Ye
- College of Food Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China; Biotechnology Department, Qujing Vocational and Technical College, 1308 Taihe Street East, Qilin District, Qujing, 655000, People's Republic of China
| | - Qingzhi Lei
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China
| | - Yandong Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China
| | - Hang Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China
| | - Jinjing Du
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China
| | - Hongbin Pan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China; Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China.
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China; Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Yunnan Agricultural University, Heilongtan, North Suburb, Kunming, 650201, People's Republic of China.
| |
Collapse
|
4
|
Jeffrey MP, Jones Taggart H, Strap JL, Edun G, Green-Johnson JM. Milk fermented with Lactobacillus rhamnosus R0011 induces a regulatory cytokine profile in LPS-challenged U937 and THP-1 macrophages. Curr Res Food Sci 2020; 3:51-58. [PMID: 32914120 PMCID: PMC7473351 DOI: 10.1016/j.crfs.2020.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fermented dairy products have become attractive functional foods for the delivery of probiotics and their biologically active metabolites. The aim of this study was to examine the immunomodulatory activity of milk fermented with the probiotic lactic acid bacterium Lactobacillus rhamnosus R0011 (LrF) on macrophages challenged with lipopolysaccharide (LPS), a potent pro-inflammatory stimulus. To this end, human THP-1 or U937 monocytes were differentiated into resting macrophages then stimulated with LPS and co-incubated with the LrF or with milk controls. Levels of pro-inflammatory and immunoregulatory cytokines were determined by enzyme-linked immunosorbent assays. Culturing of LPS-stimulated U937 macrophages with either the whole or filtered LrF resulted in an increase in Interleukin (IL)-1Ra production relative to the negative control. THP-1 macrophages cultured with the LrF demonstrated an increase in LPS-induced IL-10 and IL-1β production, while production of LPS-induced IL-6, sCD54, IL-8, IL-1β, TNF-α, IL-12p70 and Transforming Growth Factor-β (TGF-β) was unaffected. Further, the LrF induced the expression of DC-SIGN and CD206, markers of immunoregulatory M2 macrophage polarization, in LPS-challenged THP-1 macrophages. Taken together, milk fermented with L. rhamnosus R0011 increased regulatory cytokine production from LPS-challenged U937 and THP-1 macrophages, while simultaneously up-regulating the production of IL-1β and expression of DC-SIGN and CD206, a profile characteristic of polarization into the immunoregulatory M2 macrophage phenotype. Milk fermented with Lactobacillus rhamnosus R0011 (Lrf) induces a regulatory macrophage phenotype. Modulation of cytokine profiles induced by lipopolysaccharide challenge consistent with an alternatively activated (M2) macrophage phenotype. Fermented milk conditioning induced macrophage expression of genes characteristic of M2 macrophage polarization (DC-SIGN and CD206).
Collapse
Affiliation(s)
- Michael P. Jeffrey
- Applied Bioscience Graduate Program, Ontario Technical University, Oshawa, ON, Canada
| | - Holly Jones Taggart
- Applied Bioscience Graduate Program, Ontario Technical University, Oshawa, ON, Canada
- Faculty of Health Sciences, Ontario Technical University, Oshawa, ON, L1G 0C5, Canada
| | - Janice L. Strap
- Applied Bioscience Graduate Program, Ontario Technical University, Oshawa, ON, Canada
- Faculty of Science, Ontario Technical University, Oshawa, ON, L1G 0C5, Canada
| | - Gibran Edun
- Faculty of Science, Ontario Technical University, Oshawa, ON, L1G 0C5, Canada
| | - Julia M. Green-Johnson
- Applied Bioscience Graduate Program, Ontario Technical University, Oshawa, ON, Canada
- Faculty of Science, Ontario Technical University, Oshawa, ON, L1G 0C5, Canada
- Corresponding author. Faculty of Science, Ontario Technical University, 2000 Simcoe Street North, Oshawa, ON, Canada.
| |
Collapse
|
5
|
Cao ZH, Green-Johnson JM, Buckley ND, Lin QY. Bioactivity of soy-based fermented foods: A review. Biotechnol Adv 2019; 37:223-238. [PMID: 30521852 DOI: 10.1016/j.biotechadv.2018.12.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 09/29/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022]
Abstract
For centuries, fermented soy foods have been dietary staples in Asia and, now, in response to consumer demand, they are available throughout the world. Fermentation bestows unique flavors, boosts nutritional values and increases or adds new functional properties. In this review, we describe the functional properties and underlying action mechanisms of soy-based fermented foods such as Natto, fermented soy milk, Tempeh and soy sauce. When possible, the contribution of specific bioactive components is highlighted. While numerous studies with in vitro and animal models have hinted at the functionality of fermented soy foods, ascribing health benefits requires well-designed, often complex human studies with analysis of diet, lifestyle, family and medical history combined with long-term follow-ups for each subject. In addition, the contribution of the microbiome to the bioactivities of fermented soy foods, possibly mediated through direct action or bioactive metabolites, needs to be studied. Potential synergy or other interactions among the microorganisms carrying out the fermentation and the host's microbial community may also contribute to food functionality, but the details still require elucidation. Finally, safety evaluation of fermented soy foods has been limited, but is essential in order to provide guidelines for consumption and confirm lack of toxicity.
Collapse
Affiliation(s)
- Zhen-Hui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Julia M Green-Johnson
- Faculty of Science, University of Ontario Institute of Technology (UOIT), Oshawa L1H 7K4, Canada
| | | | - Qiu-Ye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
6
|
Lee S, Kwon HK, Park H, Park Y. Solid–state fermentation of germinated black bean (Rhynchosia nulubilis) using Lactobacillus pentosus SC65 and its immunostimulatory effect. FOOD BIOSCI 2018. [DOI: 10.1016/j.fbio.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Riaz Rajoka MS, Shi J, Zhu J, Shao D, Huang Q, Yang H, Jin M. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention. Appl Microbiol Biotechnol 2016; 101:35-45. [PMID: 27888334 DOI: 10.1007/s00253-016-8005-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023]
Abstract
Lactic acid bacteria are associated with the human gastrointestinal tract. They are important for maintaining the balance of microflora in the human gut. An increasing number of published research reports in recent years have denoted the importance of producing interferon-gamma and IgA for treatment of disease. These agents can enhance the specific and nonspecific immune systems that are dependent on specific bacterial strains. The mechanisms of these effects were revealed in this investigation, where the cell walls of these bacteria were modulated by the cytokine pathways, while the whole bacterial cell mediated the host cell immune system and regulated the production of tumor necrosis factors and interleukins. A supplement of highly active lactic acid bacteria strains provided significant potential to enhance host's immunity, offering prevention from many diseases including some cancers. This review summarizes the current understanding of the function of lactic acid bacteria immunity enhancement and cancer prevention.
Collapse
Affiliation(s)
- Muhammad Shahid Riaz Rajoka
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| | - Jing Zhu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Mingliang Jin
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| |
Collapse
|