1
|
Yang Y, Zheng X, Lv H, Tang B, Zhong Y, Luo Q, Bi Y, Yang K, Zhong H, Chen H, Lu C. The causal relationship between serum metabolites and the risk of psoriasis: a Mendelian randomization and meta-analysis study. Front Immunol 2024; 15:1343301. [PMID: 38529280 PMCID: PMC10961426 DOI: 10.3389/fimmu.2024.1343301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Objective To explore the influence of serum metabolites on the risk of psoriasis. Methods In the initial stage, we applied Mendelian randomization to evaluate the association between 1,400 serum metabolites and the risk of psoriasis. Causal effects were primarily assessed through the Inverse-Variance Weighted method and Wald Ratio's odds ratios, and 95% confidence intervals. False Discovery Rate was used for multiple comparison corrections. Sensitivity analyses were conducted using Cochran's Q Test, MR-PRESSO. MR-Steiger Test was employed to check for reverse causality. In the validation stage, we sought other sources of psoriasis GWAS data to verify the initial results and used meta-analysis to combine the effect sizes to obtain robust causal relationships. In addition, we also conducted metabolic pathway enrichment analysis on known metabolites that have a causal relationship with the risk of psoriasis in both stages. Results In the initial stage, we identified 112 metabolites causally associated with psoriasis, including 32 metabolite ratios and 80 metabolites (69 known and 11 unknown). In the validation stage, 24 metabolites (16 known, 1 unknown, and 7 metabolite ratios) were confirmed to have a causal relationship with psoriasis onset. Meta-analysis results showed that the overall effect of combined metabolites was consistent with the main analysis in direction and robust in the causal relationship with psoriasis onset. Of the 16 known metabolites, most were attributed to lipid metabolism, with 5 as risk factors and 8 as protective factors for psoriasis. Peptidic metabolite Gamma-glutamylvaline levels had a negative causal relationship with psoriasis, while exogenous metabolite Catechol sulfate levels and amino acid 3-methylglutaconate levels had a positive causal relationship with the disease onset. The metabolites associated with psoriasis risk in the two stages are mainly enriched in the following metabolic pathways: Glutathione metabolism, Alpha Linolenic Acid and Linoleic Acid Metabolism, Biosynthesis of unsaturated fatty acids, Arachidonic acid metabolism, Glycerophospholipid metabolism. Conclusion Circulating metabolites may have a potential causal relationship with psoriasis risk, and targeting specific metabolites may benefit psoriasis diagnosis, disease assessment, and treatment.
Collapse
Affiliation(s)
- Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuwei Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiying Lv
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Tang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyuan Zhong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianqian Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kexin Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haixin Zhong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Bioactive and Sensory Di- and Tripeptides Generated during Dry-Curing of Pork Meat. Int J Mol Sci 2023; 24:ijms24021574. [PMID: 36675084 PMCID: PMC9866438 DOI: 10.3390/ijms24021574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Dry-cured pork products, such as dry-cured ham, undergo an extensive proteolysis during manufacturing process which determines the organoleptic properties of the final product. As a result of endogenous pork muscle endo- and exopeptidases, many medium- and short-chain peptides are released from muscle proteins. Many of them have been isolated, identified, and characterized, and some peptides have been reported to exert relevant bioactivity with potential benefit for human health. However, little attention has been given to di- and tripeptides, which are far less known, although they have received increasing attention in recent years due to their high potential relevance in terms of bioactivity and role in taste development. This review gathers the current knowledge about di- and tripeptides, regarding their bioactivity and sensory properties and focusing on their generation during long-term processing such as dry-cured pork meats.
Collapse
|
3
|
Guha S, Majumder K. Comprehensive Review of γ-Glutamyl Peptides (γ-GPs) and Their Effect on Inflammation Concerning Cardiovascular Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7851-7870. [PMID: 35727887 DOI: 10.1021/acs.jafc.2c01712] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
γ-Glutamyl peptides (γ-GPs) are a group of peptides naturally found in various food sources. The unique γ-bond potentially enables them to resist gastrointestinal digestion and offers high stability in vivo with a longer half-life. In recent years, these peptides have caught researchers' attention due to their ability to impart kokumi taste and elicit various physiological functions via the allosteric activation of the calcium-sensing receptor (CaSR). This review discusses the various food sources of γ-glutamyl peptides, different synthesis modes, allosteric activation of CaSR for taste perception, and associated multiple biological functions they can exhibit, with a special emphasis on their role in modulating chronic inflammation concerning cardiovascular health.
Collapse
Affiliation(s)
- Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
4
|
Xie J, Gänzle MG. Characterization of γ-glutamyl cysteine ligases from Limosilactobacillus reuteri producing kokumi-active γ-glutamyl dipeptides. Appl Microbiol Biotechnol 2021; 105:5503-5515. [PMID: 34228184 DOI: 10.1007/s00253-021-11429-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022]
Abstract
γ-Glutamyl cysteine ligases (Gcls) catalyze the first step of glutathione synthesis in prokaryotes and many eukaryotes. This study aimed to determine the biochemical properties of three different Gcls from strains of Limosilactobacillus reuteri that accumulate γ-glutamyl dipeptides. Gcl1, Gcl2, and Gcl3 were heterologously expressed in Escherichia coli and purified by affinity chromatography. Gcl1, Gcl2, and Gcl2 exhibited biochemical with respect to the requirement for metal ions, the optimum pH and temperature of activity, and the kinetic constants for the substrates cysteine and glutamate. The substrate specificities of the three Gcls to 14 amino acids were assessed by liquid chromatography-mass spectrometry. All three Gcls converted ala, met, glu, and gln into the corresponding γ-glutamyl dipeptides. None of the three were active with val, asp, and his. Gcl1 and Gcl3 but not Gcl2 formed γ-glu-leu, γ-glu-ile, and γ-glu-phe; Gcl3 exhibited stronger activity with gly, pro, and asp when compared to Gcl2. Phylogenetic analysis of Gcl and the Gcl-domain of GshAB in lactobacilli demonstrated that most of Gcls were present in heterofermentative lactobacilli, while GshAB was identified predominantly in homofermentative lactobacilli. This distribution suggests a different ecological role of the enzyme in homofermentative and heterofermentative lactobacilli. In conclusion, three Gcls exhibited similar biochemical properties but differed with respect to their substrate specificity and thus the synthesis of kokumi-active γ-glutamyl dipeptides. KEY POINTS: • Strains of Limosilactobacillus reuteri encode for up to 3 glutamyl cysteine ligases. • Gcl1, Gcl2, and Gcl3 of Lm. reuteri differ in their substrate specificity. • Gcl1 and Gcl3 produce kokumi-active dipeptides.
Collapse
Affiliation(s)
- Jin Xie
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
5
|
Guha S, Alvarez S, Majumder K. Transport of Dietary Anti-Inflammatory Peptide, γ-Glutamyl Valine (γ-EV), across the Intestinal Caco-2 Monolayer. Nutrients 2021; 13:nu13051448. [PMID: 33923345 PMCID: PMC8145144 DOI: 10.3390/nu13051448] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
The present study analyzed the transepithelial transport of the dietary anti-inflammatory peptide, γ-glutamyl valine (γ-EV). γ-EV is naturally found in dry edible beans. Our previous study demonstrated the anti-inflammatory potency of γ-EV against vascular inflammation at a concentration of 1mM, and that it can transport with the apparent permeability coefficient (Papp) of 1.56 × 10-6 ± 0.7 × 10-6 cm/s across the intestinal Caco-2 cells. The purpose of the current study was to explore whether the permeability of the peptide could be enhanced and to elucidate the mechanism of transport of γ-EV across Caco-2 cells. The initial results indicated that γ-EV was nontoxic to the Caco-2 cells up to 5 mM concentration and could be transported across the intestinal cells intact. During apical-to-basolateral transport, a higher peptide dose (5 mM) significantly (p < 0.01) enhanced the transport rate to 2.5 × 10-6 ± 0.6 × 10-6 cm/s. Cytochalasin-D disintegrated the tight-junction proteins of the Caco-2 monolayer and increased the Papp of γ-EV to 4.36 × 10-6 ± 0.16 × 10-6 cm/s (p < 0.001), while theaflavin 3'-gallate and Gly-Sar significantly decreased the Papp (p < 0.05), with wortmannin having no effects on the peptide transport, indicating that the transport route of γ-EV could be via both PepT1-mediated and paracellular.
Collapse
Affiliation(s)
- Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA;
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA;
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, USA;
- Correspondence: ; Tel.: +1-(402)-472-3510; Fax: +1-(402)-472-4474
| |
Collapse
|
6
|
Guha S, Paul C, Alvarez S, Mine Y, Majumder K. Dietary γ-Glutamyl Valine Ameliorates TNF-α-Induced Vascular Inflammation via Endothelial Calcium-Sensing Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9139-9149. [PMID: 32786865 PMCID: PMC8012099 DOI: 10.1021/acs.jafc.0c04526] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
γ-Glutamyl valine (γ-EV), commonly found in edible beans, was shown to reduce gastrointestinal inflammation via activation of calcium-sensing receptors (CaSRs). The present study aimed to evaluate the efficacy of γ-EV in modulating the tumor necrosis factor-α-induced inflammatory responses in endothelial cells (ECs) via CaSR-mediated pathways. Human aortic ECs (HAoECs) were pretreated (2 h) with γ-EV (0.01, 0.1, and 1 mM). 1 mM pretreatment of γ-EV significantly reduced the upregulation of inflammatory adhesion molecules, VCAM-1 and E-selectin, by 44.56 and 57.41%, respectively. The production of cytokines IL-8 and IL-6 was significantly reduced by 40 and 51%, respectively, with 1 mM pretreatment of γ-EV. Similarly, there was a significant reduction in chemokine MCP-1 from a positive control of 9.70 ± 0.52 to 6.6 ± 0.43 ng/mL, after γ-EV treatment. The anti-inflammatory effect of γ-EV was attenuated by the treatment of the CaSR-specific inhibitor, NPS-2143, suggesting the involvement of CaSR-mediated pathways. Further studies identified the critical role of key modulators, such as β-arrestin2 and cyclic adenosine monophosphate response element-binding protein, in mediating the CaSR-dependent anti-inflammatory effect of γ-EV. Finally, the transport efficiency of γ-EV was evaluated through a monolayer of intestinal epithelial cells (Caco-2), and the apparent permeability (Papp) of the peptide was found to be 1.56 × 10-6 cm/s.
Collapse
Affiliation(s)
- Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, Nebraska, United States
| | - Catherine Paul
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, Nebraska, United States
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln 68588, Nebraska, United States
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph N1G2W1, Ontario, Canada
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588, Nebraska, United States
| |
Collapse
|
7
|
Keirns BH, Lucas EA, Smith BJ. Phytochemicals affect T helper 17 and T regulatory cells and gut integrity: implications on the gut-bone axis. Nutr Res 2020; 83:30-48. [PMID: 33010588 DOI: 10.1016/j.nutres.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The pathology of osteoporosis is multifactorial, but a growing body of evidence supports an important role of the gut-bone axis, especially in bone loss associated with menopause, rheumatoid arthritis, and periodontal disease. Aberrant T cell responses favoring an increase in the ratio of T helper 17 cells to T regulatory cells play a critical role in the underlying etiology of this bone loss. Many of the dietary phytochemicals known to have osteoprotective activity such as flavonoids, organosulfur compounds, phenolic acids, as well as the oligosaccharides also improve gut barrier function and affect T cell differentiation and activation within gut-associated lymphoid tissues and at distal sites. Here, we examine the potential of these phytochemicals to act as prebiotics and immunomodulating agents, in part targeting the gut to mediate their effects on bone.
Collapse
Affiliation(s)
- Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| |
Collapse
|
8
|
Reyes-Díaz A, Del-Toro-Sánchez CL, Rodríguez-Figueroa JC, Valdéz-Hurtado S, Wong-Corral FJ, Borboa-Flores J, González-Osuna MF, Perez-Perez LM, González-Vega RI. Legume Proteins as a Promising Source of Anti-Inflammatory Peptides. Curr Protein Pept Sci 2020; 20:1204-1217. [PMID: 31208309 DOI: 10.2174/1389203720666190430110647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/21/2019] [Accepted: 03/27/2019] [Indexed: 11/22/2022]
Abstract
Legume proteins are precursors of bioactive components, such as peptides. In the present paper, different types of legume as sources of bioactive peptides and hydrolysates are considered and discussed based on their anti-inflammatory effect. Peptides with anti-inflammatory activity were included from in vitro and in vivo studies. Current strategies for obtaining bioactive peptides, as well as their structure and impact on health, were also reviewed. It was discovered that peptides derived from legume protein, mainly soybean and bean, can regulate several inflammatory markers, which include prostaglandin E2 (PGE2), nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX- 2), cytokines, and chemokines. So far, lunasin, VPY and γ-glutamyl peptides have been identified with anti-inflammatory activity but their mechanisms have not been fully elucidated. Furthermore, it is necessary to gather more information about hydrolysates containing peptides and single peptides with antiinflammatory activity. Considering the wide diversity, legume may be promising components to produce peptides efficient to ameliorate inflammatory disorders.
Collapse
Affiliation(s)
- Aline Reyes-Díaz
- Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Carmen Lizette Del-Toro-Sánchez
- Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - José Carlos Rodríguez-Figueroa
- Departamento de Ingenieria Quimica y Metalurgia, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Santiago Valdéz-Hurtado
- Universidad Estatal de Sonora, Unidad Navojoa, Blvd. Manlio Fabio Beltrones 810, Col. Bugambilias, 85875, Navojoa, Sonora, Mexico
| | - Francisco Javier Wong-Corral
- Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Jesús Borboa-Flores
- Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - María Fernanda González-Osuna
- Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Liliana Maribel Perez-Perez
- Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Ricardo Iván González-Vega
- Departamento de Investigacion y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| |
Collapse
|
9
|
Zhang H, Xu CN, Mine Y. Synthetic phosphoserine dimer attenuates lipopolysaccharide‐induced inflammatory response in human intestinal epithelial cells via activation of NF‐κB and MAPKs cell signalling pathways. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hua Zhang
- Department of Food Science University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Cai Na Xu
- Department of Food Science University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Yoshinori Mine
- Department of Food Science University of Guelph Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
10
|
Gamma glutamyl peptides: The food source, enzymatic synthesis, kokumi-active and the potential functional properties – A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Xing L, Zhang H, Majumder K, Zhang W, Mine Y. γ-Glutamylvaline Prevents Low-Grade Chronic Inflammation via Activation of a Calcium-Sensing Receptor Pathway in 3T3-L1Mouse Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8361-8369. [PMID: 31339708 DOI: 10.1021/acs.jafc.9b02334] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The calcium-sensing receptor (CaSR), a G-protein receptor, is well recognized for its role in the regulation of adipocyte proliferation, in modulating adipose tissue dysfunction, and as a potential target for therapeutic intervention. In the present study, we investigate the anti-inflammatory effect of γ-glutamylvaline (γ-EV) on mouse adipocytes and explore the role of γ-EV-activated CaSR in the regulation of cellular homeostasis using the mouse 3T3-L1 cell line in vitro model. Our results indicate that the 3T3-L1 adipocyte-like cells accumulated lipids and expressed CaSR after 2 days of differentiation and 7 days of maturation period. The pretreatment with γ-EV (10 μM) suppressed the production of TNF-α-induced pro-inflammatory cytokines, i.e., IL-6 (23.92 ± 5.45 ng/mL, p < 0.05)) and MCP-1 (101.17 ± 39.93 ng/mL, p < 0.05), while enhancing the expression of PPARγ (1.249 ± 0.109, p < 0.001) and adiponectin (7.37 ± 0.59 ng/mL, p < 0.05). Elevated expression of Wnt5a was detected in γ-EV-treated cells (115.90 ± 45.50, p < 0.001), suggesting the involvement of the Wnt/β-catenin pathway. Also, phosphorylation of β-catenin was shown to be significantly inhibited (0.442 ± 0.034) by TNF-α but restored when cells were pretreated with γ-EV (0.765 ± 0.048, p < 0.05). These findings suggest that γ-EV-induced CaSR activation not only prevents TNF-α-induced inflammation in adipocytes but also modulates the cross-talk between Wnt and PPARγ pathways. Concentrations of serine phosphorylated IRS-1 were shown to be lower in γ-EV-treated cells, indicating γ-EV may also prevent inflammation in the context of insulin resistance. Thus, γ-EV-activated CaSR plays a significant role in the cross-talk between adipocyte inflammatory and metabolic pathways through the regulation of extracellular sensing.
Collapse
Affiliation(s)
- Lujuan Xing
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
- Key Laboratory of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210000 , China
| | - Hua Zhang
- Guelph Food Research Centre , Agriculture and Agri-Food Canada , Guelph , Ontario N1G 5C9 , Canada
| | - Kaustav Majumder
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control , Nanjing Agricultural University , Nanjing 210000 , China
| | - Yoshinori Mine
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
12
|
Zhang H, Xu CN, Mine Y. Effects of a synthetic di‐phosphoserine peptide (SS‐2) on gene expression profiling against TNF‐α induced inflammation. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hua Zhang
- Department of Food Science University of Guelph Guelph ON N1G 2W1 Canada
| | - Cai Na Xu
- Department of Food Science University of Guelph Guelph ON N1G 2W1 Canada
| | - Yoshinori Mine
- Department of Food Science University of Guelph Guelph ON N1G 2W1 Canada
| |
Collapse
|
13
|
Zhang H, Mine Y. Is Calcium-Sensing Receptor a New Molecular Target toward Improving Gastrointestinal Health? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3995-3997. [PMID: 29638127 DOI: 10.1021/acs.jafc.8b01150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Hua Zhang
- Guelph Food Research Centre , Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Yoshinori Mine
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
14
|
Majumder K, Fukuda T, Zhang H, Sakurai T, Taniguchi Y, Watanabe H, Mitsuzumi H, Matsui T, Mine Y. Intervention of Isomaltodextrin Mitigates Intestinal Inflammation in a Dextran Sodium Sulfate-Induced Mouse Model of Colitis via Inhibition of Toll-like Receptor-4. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:810-817. [PMID: 28102669 DOI: 10.1021/acs.jafc.6b04903] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Isomaltodextrin (IMD), a highly branched α-glucan, is a type of resistant starch. Earlier studies have indicated that polysaccharides could prevent inflammation and can be effective in reducing the complications of chronic gastrointestinal diseases such as inflammatory bowel disease (IBD). Therefore, the aim of the present study was to evaluate the anti-inflammatory effect of IMD in dextran sodium sulfate (DSS)-induced colitis in a mouse model. IMD (0.5, 1.0, 2.5, and 5.0% (w/v)) was given orally for 23 days to female Balb/c mice, and then 5% DSS was administered to induce colitis (from day 15 onward to the end of the trial). IMD could not prevent DSS-induced weight loss or colon shortening. However, IMD could reduce inflammatory cytokines, TNF-α and IL-6, in the colon. Gene expression indicated the tendency of IMD to suppress pro-inflammatory cytokines IL-1β, MCP-1, and IL-17 and to increase an anti-inflammatory cytokine, IL-10. Further study revealed that the anti-inflammatory action of IMD mediates through inhibition of the expression of Toll-like receptor-4.
Collapse
Affiliation(s)
- Kaustav Majumder
- Department of Food Science, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Toshihiko Fukuda
- Department of Food Science, University of Guelph , Guelph, Ontario N1G 2W1, Canada
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Hua Zhang
- Department of Food Science, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Takeo Sakurai
- R&D Center, Hayashibara Company, Ltd. , 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan
| | - Yoshifumi Taniguchi
- R&D Center, Hayashibara Company, Ltd. , 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan
| | - Hikaru Watanabe
- R&D Center, Hayashibara Company, Ltd. , 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan
| | - Hitoshi Mitsuzumi
- R&D Center, Hayashibara Company, Ltd. , 675-1 Fujisaki, Naka-ku, Okayama 702-8006, Japan
| | - Toshiro Matsui
- Division of Bioresources and Bioenvironmental Sciences, Faculty of Agriculture, Graduate School, Kyushu University , Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yoshinori Mine
- Department of Food Science, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|