1
|
Wu Z, Zhang T, Ma X, Guo S, Zhou Q, Zahoor A, Deng G. Recent advances in anti-inflammatory active components and action mechanisms of natural medicines. Inflammopharmacology 2023; 31:2901-2937. [PMID: 37947913 DOI: 10.1007/s10787-023-01369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Inflammation is a series of reactions caused by the body's resistance to external biological stimuli. Inflammation affects the occurrence and development of many diseases. Anti-inflammatory drugs have been used widely to treat inflammatory diseases, but long-term use can cause toxic side-effects and affect human functions. As immunomodulators with long-term conditioning effects and no drug residues, natural products are being investigated increasingly for the treatment of inflammatory diseases. In this review, we focus on the inflammatory process and cellular mechanisms in the development of diseases such as inflammatory bowel disease, atherosclerosis, and coronavirus disease-2019. Also, we focus on three signaling pathways (Nuclear factor-kappa B, p38 mitogen-activated protein kinase, Janus kinase/signal transducer and activator of transcription-3) to explain the anti-inflammatory effect of natural products. In addition, we also classified common natural products based on secondary metabolites and explained the association between current bidirectional prediction progress of natural product targets and inflammatory diseases.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agriculture University, Lanzhou, China
| | - Shuai Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Arshad Zahoor
- College of Veterinary Sciences, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Sadiq NB, Kwon H, Park NI, Hamayun M, Jung JH, Yang SH, Jang SW, Kabadayı SN, Kim HY, Kim YJ. The Impact of Light Wavelength and Darkness on Metabolite Profiling of Korean Ginseng: Evaluating Its Anti-Cancer Potential against MCF-7 and BV-2 Cell Lines. Int J Mol Sci 2023; 24:ijms24097768. [PMID: 37175475 PMCID: PMC10178343 DOI: 10.3390/ijms24097768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Korean ginseng is a source of functional foods and medicines; however, its productivity is hindered by abiotic stress factors, such as light. This study investigated the impacts of darkness and different light wavelengths on the metabolomics and anti-cancer activity of ginseng extracts. Hydroponically-grown Korean ginseng was shifted to a light-emitting diodes (LEDs) chamber for blue-LED and darkness treatments, while white fluorescent (FL) light treatment was the control. MCF-7 breast cancer and lipopolysaccharide (LPS)-induced BV-2 microglial cells were used to determine chemo-preventive and neuroprotective potential. Overall, 53 significant primary metabolites were detected in the treated samples. The levels of ginsenosides Rb1, Rb2, Rc, Rd, and Re, as well as organic and amino acids, were significantly higher in the dark treatment, followed by blue-LED treatment and the FL control. The dark-treated ginseng extract significantly induced apoptotic signaling in MCF-7 cells and dose-dependently inhibited the NF-κB and MAP kinase pathways in LPS-induced BV-2 cells. Short-term dark treatment increased the content of Rd, Rc, Rb1, Rb2, and Re ginsenosides in ginseng extracts, which promoted apoptosis of MCF-7 cells and inhibition of the MAP kinase pathway in BV-2 microglial cells. These results indicate that the dark treatment might be effective in improving the pharmacological potential of ginseng.
Collapse
Affiliation(s)
- Nooruddin Bin Sadiq
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Hyukjoon Kwon
- Center of Biomaterials, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Nam Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Je-Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Soo-Won Jang
- Korean Ginseng Company (KGC), 71 Beotkkot-gil, Daedeok-gu, Daejeon 34337, Republic of Korea
| | - Seda Nur Kabadayı
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Young-Joo Kim
- Center of Biomaterials, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| |
Collapse
|
3
|
Hahn D, Shin SH, Bae JS. Natural Antioxidant and Anti-Inflammatory Compounds in Foodstuff or Medicinal Herbs Inducing Heme Oxygenase-1 Expression. Antioxidants (Basel) 2020; 9:E1191. [PMID: 33260980 PMCID: PMC7761319 DOI: 10.3390/antiox9121191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme that catalyzes heme group degradation. Decreased level of HO-1 is correlated with disease progression, and HO-1 induction suppresses development of metabolic and neurological disorders. Natural compounds with antioxidant activities have emerged as a rich source of HO-1 inducers with marginal toxicity. Here we discuss the therapeutic role of HO-1 in obesity, hypertension, atherosclerosis, Parkinson's disease and hepatic fibrosis, and present important signaling pathway components that lead to HO-1 expression. We provide an updated, comprehensive list of natural HO-1 inducers in foodstuff and medicinal herbs categorized by their chemical structures. Based on the continued research in HO-1 signaling pathways and rapid development of their natural inducers, HO-1 may serve as a preventive and therapeutic target for metabolic and neurological disorders.
Collapse
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Korea
| | - Seung Ho Shin
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea;
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
4
|
Jeon BM, Baek JI, Kim MS, Kim SC, Cui CH. Characterization of a Novel Ginsenoside MT1 Produced by an Enzymatic Transrhamnosylation of Protopanaxatriol-Type Ginsenosides Re. Biomolecules 2020; 10:E525. [PMID: 32244263 PMCID: PMC7226242 DOI: 10.3390/biom10040525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ginsenosides, triterpene saponins of Panax species, are considered the main active ingredients responsible for various pharmacological activities. Herein, a new protopanaxatriol-type ginsenoside called "ginsenoside MT1" is described; it was accidentally found among the enzymatic conversion products of ginsenoside Re. METHOD We analyzed the conversion mechanism and found that recombinant β-glucosidase (MT619) transglycosylated the outer rhamnopyranoside of Re at the C-6 position to glucopyranoside at C-20. The production of MT1 by trans-rhamnosylation was optimized and pure MT1 was obtained through various chromatographic processes. RESULTS The structure of MT1 was elucidated based on spectral data: (20S)-3β,6α,12β,20-tetrahydroxydammarene-20-O-[α-L-rhamnopyranosyl(1→2)-β-D-glucopyranoside]. This dammarane-type triterpene saponin was confirmed as a novel compound. CONCLUSION Based on the functions of ginsenosides with similar structures, we believe that this ginsenoside MT1 may have great potential in the development of nutraceutical, pharmaceutical or cosmeceutical products.
Collapse
Affiliation(s)
- Byeong-Min Jeon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon 305-701, Korea
| | - Jong-In Baek
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon 305-701, Korea
| | - Min-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon 305-701, Korea
| | - Sun-Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon 305-701, Korea
- Intelligent Synthetic Biology Center, 291 Daehak-Ro, Yuseong-Gu, Daejeon 305-701, Korea
- KAIST Institute for Biocentury, Korea Advanced Institute of Science and Technology, 291 Daehak-Ro, Yuseong-Gu, Daejeon 305-701, Korea
| | - Chang-Hao Cui
- Intelligent Synthetic Biology Center, 291 Daehak-Ro, Yuseong-Gu, Daejeon 305-701, Korea
| |
Collapse
|
5
|
Sharma A, Kumar Y. Nature's Derivative(s) as Alternative Anti-Alzheimer's Disease Treatments. J Alzheimers Dis Rep 2019; 3:279-297. [PMID: 31867567 PMCID: PMC6918879 DOI: 10.3233/adr-190137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD), the 'Plague of Twenty-First Century,' is a crippling neurodegenerative disease that affects a majority of the older population globally. By 2050, the incidence of AD is expected to rise to 135 million, while no treatment(s) that can reverse or control the progression of AD are currently available. The treatment(s) in use are limited in their ability to manage the symptoms or slow the progression of the disease and can lead to some severe side effects. The overall care is economically burdensome for the affected individuals as well as the caretakers or family members. Thus, there is a pressing need to identify and develop much safer alternative therapies that can better manage AD. This review discusses a multitude of such treatments borrowed from Ayurveda, traditional Chinese practices, meditation, and exercising for AD treatment. These therapies are in practice since ancient times and reported to be beneficial as anti-AD therapies. Ayurvedic drugs like turmeric, Brahmi, Ashwagandha, etc., management of stress by meditation, regular exercising, and acupuncture have been reported to be efficient in their anti-AD usage. Besides, a combination of vitamins and natural dietary intakes is likely to play a significant role in combating AD. We conclude that the use of such alternative strategies will be a stepping-stone in preventing, treating, curing, or managing the disease.
Collapse
Affiliation(s)
- Anuja Sharma
- Department of Biological Sciences and Engineering (BSE), Netaji Subhas University of Technology (NSUT), Formerly Netaji Subhas Institute of Technology (NSIT), Azad Hind Fauz Marg, New Delhi, India
| | - Yatender Kumar
- Department of Biological Sciences and Engineering (BSE), Netaji Subhas University of Technology (NSUT), Formerly Netaji Subhas Institute of Technology (NSIT), Azad Hind Fauz Marg, New Delhi, India
| |
Collapse
|
6
|
Carota G, Raffaele M, Sorrenti V, Salerno L, Pittalà V, Intagliata S. Ginseng and heme oxygenase-1: The link between an old herb and a new protective system. Fitoterapia 2019; 139:104370. [PMID: 31629872 DOI: 10.1016/j.fitote.2019.104370] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023]
Abstract
Ginseng is an ancient herb, belonging to Asian traditional medicine, that has been considered as a restorative to enhance vitality for centuries. It has been demonstrated that the antioxidant action of ginseng may be mediated through activation of different cellular signaling pathways involving the heme oxygenase (HO) system. Several compounds derived from ginseng have been studied for their potential role in brain, heart and liver protection, and the Nrf2 pathway seems to be the most affected by these natural molecules to exert this effect. Ginseng is also popularly used in cancer patients therapy for the demonstrated capability to defend tissues from chemotherapy-induced damage. Reported results suggest that the effect of ginseng is primarily associated with ROS scavenging, mainly exerted through the activation of Nrf2 pathway, and the consequent induction of HO-1 levels. This review aims to discuss the connection between the antioxidant properties of ginseng and the activation of the HO system, as well as to outline novel therapeutic applications of this medicinal plant to human health.
Collapse
Affiliation(s)
- Giuseppe Carota
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Marco Raffaele
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Valeria Sorrenti
- Department of Drug Science, Biochemistry Section, University of Catania, 95125 Catania, Italy
| | - Loredana Salerno
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Valeria Pittalà
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy
| | - Sebastiano Intagliata
- Department of Drug Science, Medicinal Chemistry Section, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
7
|
Sharman MJ, Verdile G, Kirubakaran S, Parenti C, Singh A, Watt G, Karl T, Chang D, Li CG, Münch G. Targeting Inflammatory Pathways in Alzheimer's Disease: A Focus on Natural Products and Phytomedicines. CNS Drugs 2019; 33:457-480. [PMID: 30900203 DOI: 10.1007/s40263-019-00619-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of the brains of Alzheimer's disease (AD) patients have revealed key neuropathological features, such as the deposition of aggregates of insoluble amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs). These pathological protein deposits, including Aβ peptides (which form senile plaques) and hyperphosphorylated tau (which aggregates into NFTs), have been assumed to be 'the cause of AD'. Aβ has been extensively targeted to develop an effective disease-modifying therapy, but with limited clinical success. Emerging therapies are also now targeting further pathological processes in AD, including neuroinflammation. This review focuses on the inflammatory and oxidative stress-related changes that occur in AD, and discusses some emerging anti-inflammatory natural products and phytomedicines. Many of the promising compounds are cytokine-suppressive anti-inflammatory drugs (CSAIDs), which target the proinflammatory AP1 and nuclear factor-κB signalling pathways and inhibit the expression of many proinflammatory cytokines, such as interleukin (IL)-1, IL-6, tumour necrosis factor-α, or nitric oxide produced by inducible nitric oxide synthase. However, many of these phytomedicines have not been tested in rigorous clinical trials in AD patients. It is not yet clear if the active compounds reach an effective concentration in the brain (due to limited bioavailability) or if they can slow down AD progression in long-term trials. The authors suggest that it is crucial for both the pharmacological and complementary medicine industries to conduct and fund those studies to significantly advance the field.
Collapse
Affiliation(s)
- Matthew J Sharman
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag 1322, Launceston, TAS, 7250, Australia
| | - Giuseppe Verdile
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia
| | - Shanmugam Kirubakaran
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Cristina Parenti
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Ahilya Singh
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Georgina Watt
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Tim Karl
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia.,School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,Pharmacology Unit, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|