1
|
Ma S, Zhang R, Li L, Wang J, Zheng M, Guo X, Miao S, Quan W, Liu W, Shi X. Structural characterization of an apple polysaccharide and its anti-inflammatory effect through suppressing TLR4/NF-κB signaling. Int J Biol Macromol 2025; 296:139760. [PMID: 39800032 DOI: 10.1016/j.ijbiomac.2025.139760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
The current study isolated a homogeneous polysaccharide (AP) with a molecular weight of 7.9 kDa from the pomace of Fuji apples. AP was found to consists of rhamnose, galactose, arabinose, glucose, and galacturonic acid in a ratio of 4.3:5.2:2.6:1.0:11.9. Ten sugar residues in AP, including T-Araf, 1,5-Araf, 1,2-Rhap, 1,3-Rhap, T-Galp, 1,3,5-Araf, 1,4-Galp, 1,4-GalpA, 1,6-Glcp, and 1,3,6-Glcp were identified using methylation and GC-MS. Combined with 1D and 2D NMR, it was further revealed that AP possesses a backbone of α-Galp-(1 → [3)-α-Rhap-(1 → 2)-α-Rhap-(1]2 → [4)-α-GalpA-(1]10 → 3,6)-β-Glcp-(1 → 6)-β-Glcp-(1 → 4)-β-Galp-(1 → 4)-β-Galp-(1→, with two branches: α-Araf-(1 → 5)-α-Araf-(1 → 5)-α-Araf-(1 → 3,5)-α-Araf-(1 → 6)-β-Glcp-(1→ and →3)-α-Rhap-(1 → 5)-α-Araf-(1 → 3,6)-β-Glcp-(1→ bonded to the C-3 of β-1,3,6-Glcp. AP significantly inhibited the release of cytokines and inflammatory mediators, such as TNF-α, IL-1β, IL-6, reactive oxygen species (ROS) and nitric oxide (NO). Western blotting results indicated that AP treatment markedly downregulated iNOS and NF-κB protein expression in LPS-induced RAW264.7 cells, leading to decreased levels of phosphorylated proteins (p-NF-κB and p-ΙκΒα) and preventing the degradation of ΙκΒα. Furthermore, in LPS-induced RAW264.7 macrophages, AP inhibited the expression of TLR4 protein, which in turn inhibited the activity of the NF-κB pathway. The findings demonstrated that AP exhibits anti-inflammatory properties in vitro by targeting the TLR4/NF-κB signaling pathway, thus impeding the nuclear translocation of NF-κBp65, suppressing the expression of related pro-inflammatory factors.
Collapse
Affiliation(s)
- Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China; Innovation Research Institute, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Rui Zhang
- Department of Otolaryngology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Long Li
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Jin Wang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Meiling Zheng
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 710426, PR China
| | - Xiaodi Guo
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Shan Miao
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China
| | - Wei Quan
- Department of Pharmacy, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, PR China.
| | - Wenjuan Liu
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 710426, PR China.
| | - Xiaopeng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
2
|
Zhang Z, Zeng Z, Wang L, Xiong B, Zheng B, Zhang Y, Pan L. Dictyophora indusiata polysaccharide attenuated LPS-induced intestinal inflammation of mice via the TLR4/JNK signaling pathway. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:974-981. [PMID: 39268777 DOI: 10.1002/jsfa.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Dictyophora indusiata polysaccharide is an important bioactive component of D. indusiata, playing an important role in alleviating inflammation. The present study aimed to investigate the anti-inflammatory effect and mechanism of D. indusiata polysaccharide on lipopolysaccharide (LPS)-induced intestinal inflammation in mice. RESULTS Our results indicated that D. indusiata polysaccharide ameliorated intestinal inflammation of mice by increasing the body weight, the number of goblet cells and decreasing inflammatory cell infiltration. In addition, D. indusiata polysaccharide significantly up-regulated expression of ZO-1, Occuldin mRNA, which were 2.55-fold and 2.28-fold higher than the LPS group, respectively. In particular, D. indusiata polysaccharide effectively inhibited the Toll-like receptor 4 (TLR4)/ c-Jun NH2-terminal kinase (JNK) signalling pathway which was 0.34-fold and 0.49-fold of gene expression and 0.41-fold and 0.39-fold of protein expression in the LPS group, respectively. CONCLUSION The results of the present study suggested that D. indusiata polysaccharide exerted anti-inflammatory and intestinal protective effects by inhibiting the TLR4/JNK signaling pathway, which will provide a basis for the potential value of D. indusiata polysaccharide as prebiotics in food applications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zihao Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhikun Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Bin Xiong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| | - Lei Pan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Integrated Scientific Research Base of Edible Fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, China
| |
Collapse
|
3
|
Asgharzadeh F, Attarian M, Khazaei M, Al-Asady AM, Mansoori S, Naimi H, Eskandari M, Khorrami A, Nazari SE, Aminian A, Farazastanian M, Eshtad E, Avan A, Ryzhikov M, Hasanzadeh M, Hassanian SM. Ziziphus jujube promotes fertility and pregnancy outcomes in Rat model of uterine adhesions. Front Pharmacol 2025; 15:1496136. [PMID: 39931514 PMCID: PMC11807978 DOI: 10.3389/fphar.2024.1496136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction The therapeutic efficacy of oral administration of Ziziphus jujube in the context of uterine adhesion (UA) and its impact on pregnancy outcomes was investigated. Methods In a rat UA model, Z. jujube was evaluated for its ability to mitigate injury-induced uterine adhesion bands, uterine shortening, and enhance endometrial regeneration. The assessment included analysis of gland numbers, uterine endometrial thickness, and regulation of inflammatory cytokines. The antioxidant properties of Z. jujube were also studied through antioxidant enzyme activity in uterine tissue homogenates. Fibrotic changes were examined through histological Trichrome staining and analysis of pro-fibrotic factors. Results Treatment with Z. jujube resulted in a significant reduction in uterine tissue fibrosis, as evidenced by histological evaluation and reduced expression of fibrotic markers. The intervention demonstrated positive outcomes in embryonic development, pregnancy rates, and pregnancy outcomes. Z. jujube effectively inhibited the formation of extra-uterine adhesion bands to internal organs. No toxicity-related morphological changes were observed in vital organs of the Z. Jujube-treated group. Discussion The results collectively indicate that Z. jujube is a safe and potent natural product with anti-inflammatory and anti-fibrotic properties, highlighting its potential as a novel candidate for clinical studies targeting UA in patients.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Attarian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, Warith Al-Anbiyaa University, Kerbala, Iraq
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Kerbala, Iraq
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeide Mansoori
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Naimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Eskandari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Khorrami
- Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Aminian
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Marjaneh Farazastanian
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Eshtad
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- School of Medicine, Saint Louis University, Saint Louis, MO, United States
| | - Malihe Hasanzadeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Liu J, Wu Z, Zhu J, Fu X, Wang M, Xing J, Qin X, Tu Y, Liu YG. Insight into the impact of various processing stages on metabolites and flavors in jujube jam. Food Res Int 2025; 200:115440. [PMID: 39779099 DOI: 10.1016/j.foodres.2024.115440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Essential to the determination of the ultimate and flavor of jujube jam are various processing stages. Nevertheless, the alterations in metabolites and flavor chemistry throughout the processing of jujube jam are poorly comprehended. This research employed metabolomics, flavor analysis, and microbial indicators to examine the impact of distinct processing stages on the metabolites and flavor profile of jujube jam. The research findings indicated that the sterilization stage (SJ) was the most favorable stage for metabolite accumulation. Hexahydro-pseudoketone and 2-methylbutyraldehyde, compounds responsible for off-odors, exhibited a significant reduction following the concentration stage (NS). The distinctive flavors detected in jujube jam included floral, citrus, sweet and sour, as well as cheesy notes. Furthermore, the alterations observed in microbial indicators confirmed that the jujube jam products adhered to the established jam production benchmarks. In summary, these findings offer a foundational framework for the creation of a regulated processing system and for the improvement of jujube jam quality, thereby providing valuable guidance for the targeted production of premium jujube jam.
Collapse
Affiliation(s)
- Jun Liu
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Zhe Wu
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jiamin Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xiaoyu Fu
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Mengnan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jun Xing
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Xinzheng Qin
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830000, China
| | - Yixian Tu
- Xinjiang Key Laboratory of Biological Resources and Genetics Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yun-Guo Liu
- College of Life Sciences, Linyi University, Linyi 276005, China.
| |
Collapse
|
5
|
Guo H, Li D, Miao B, Feng K, Chen G, Gan R, Kang Z, Gao H. Mild ultrasound-assisted alkali de-esterification modified pectins: Characterization and structure-activity relationships in immunomodulatory effects. ULTRASONICS SONOCHEMISTRY 2025; 112:107215. [PMID: 39742686 PMCID: PMC11751549 DOI: 10.1016/j.ultsonch.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Apple pectin (AP), a well-established dietary fiber, offers significant health benefits, particularly in immunomodulation. However, the structure-activity relationship (SAR) in this context remains poorly understood. This study aimed to elucidate the impact of varying degrees of esterification (DE) on AP's SAR in immunomodulatory activity. AP-Es (AP-E1, AP-E2, AP-E3) with different DE were prepared using mild ultrasound-assisted alkali de-esterification, followed by SAR analysis. Results revealed that AP-E3, with the lowest DE (5.08 ± 0.22 %), demonstrated a significant reduction in homogalacturonan (HG) domains and a corresponding increase in rhamnogalacturonan-I (RG-I) domains, which coincided with enhanced immunomodulatory effects. The molecular weights of AP-E1, AP-E2, and AP-E3 were determined to be 30.94 ± 0.83 kDa, 27.61 ± 0.65 kDa, and 22.17 ± 0.57 kDa, respectively. To further explore the underlying mechanism, transgenic zebrafish with fluorescent macrophages were utilized. A positive correlation was observed between AP-E3 concentration and the number of fluorescent microspheres engulfed by macrophages. Additionally, AP-E3 significantly upregulated the expression of key immune response genes (tnf-α, il-1β, il-6, cox-2, inos, and nf-κb) and restored the gut microbiota composition and abundance in chloramphenicol-induced immunocompromised zebrafish. Metabolomics analysis revealed that AP-E3 effectively restored metabolic homeostasis by activating multiple signaling pathways associated with signal transduction, immune regulation, and metabolism. These findings highlight the potential of low-esterified AP enriched with RG-I domains as a promising candidate for applications in immune modulation and gut health management.
Collapse
Affiliation(s)
- Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Dong Li
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China; Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China
| | - Baohe Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China.
| | - Kanglin Feng
- Fruit and Vegetable Storage and Processing Research Center, Institute of Agricultural Products Processing, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Guijing Chen
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu 610200, China
| | - Renyou Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhiliang Kang
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Liu Y, Meng Y, Ji H, Guo J, Shi M, Lai F, Ji X. Structural characteristics and antioxidant activity of a low-molecular-weight jujube polysaccharide by ultrasound assisted metal-free Fenton reaction. Food Chem X 2024; 24:101908. [PMID: 39507930 PMCID: PMC11539519 DOI: 10.1016/j.fochx.2024.101908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
This study used an ultrasonically accelerated metal-free Fenton (H2O2-Vc system) reaction to promote water-extracted degrading polysaccharides from Ziziphus Jujuba cv. Muzao (DZMP). A novel jujube polysaccharide (DPZMP3) was obtained by degradation using DEAE-Sepharose Fast Flow and Sephacryl S-100 column chromatography. Methylation analysis, HPGPC, ion chromatography, FT-IR, and NMR spectroscopies were used to clarify the chemical structures of DPZMP3. Monosaccharide compositional analysis of DPZMP3 revealed the presence of Rha, Ara, Gal, and GalA at a molar ratio of 1.00:1.49:1.60:7.68, and the HPGPC data demonstrated the average Mw of 34.3 kDa. Based on the structural and linkage research using NMR spectroscopy and GC-MS, it was determined that DPZMP3 was a homogalacturonan pectic polysaccharide with a (1 → 4)-Galp branch at C-6 and a small amount of Araf and Rhap residues. The ultrasonic-aided Fenton treatment did not significantly alter the structure of DPZMP3. It may also be useful for DZMP and enhancing their antioxidant activity in vitro. The current study's findings could pave the way for the food sector to use jujube polysaccharides obtained by degradation as a functional food component.
Collapse
Affiliation(s)
- Yingying Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Haozhen Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Jianhang Guo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Miaomiao Shi
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
| | - Feiliao Lai
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiaolong Ji
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- National & Local Joint Engineering Research Center of Cereal-Based Foods (Henan), Zhengzhou 450001, China
- Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
7
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
8
|
Li YM, Zhan XM, Hao KX, Zhong RF, Wang DW, Ma SY, Jiang J, Zhu W. A polysaccharide PRCP from Rosa cymosa Tratt fruit: Structural characteristics and immunomodulatory effects via MAPK pathway modulation in vitro. Int J Biol Macromol 2024; 276:133025. [PMID: 38852737 DOI: 10.1016/j.ijbiomac.2024.133025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/29/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
The Rosa cymosa Tratt, an herbal plant from the Rosaceae family, has historically been valued in China for its medicinal and edible properties. In this study, a novel polysaccharide from R. cymosa fruit, termed PRCP (purified R. cymosa polysaccharide), was isolated using water extraction, decolorization, deproteinization, and ion-exchange chromatography. The structural characteristics of PRCP were investigated using monosaccharide composition analysis, methylation, GPC, FTIR, CD, and NMR spectroscopy. The immunomodulatory effect and potential mechanism of PRCP were evaluated in vitro using a macrophage cell model. Results indicated that PRCP (37.28 kDa) is a highly branched polysaccharide (72.61 %) primarily composed of arabinogalactan, rhamnogalacturonan, and galactoglucan domains with 13 types of glycosidic linkage fragments. Furthermore, PRCP appears to modulate immunomodulatory effects by influencing the phosphorylation of P38 and JNK proteins in the MAPK pathway. Collectively, these findings highlight the potential of PRCP as a promising natural functional food ingredient for immunostimulation.
Collapse
Affiliation(s)
- Yi-Meng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Synthetic Enzymes and Natural Products Centre, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Xiao-Mei Zhan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ke-Xin Hao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Rui-Fang Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Da-Wei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Guangzhou 528329, China
| | - Shi-Yu Ma
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Jianguo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Wei Zhu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
9
|
Huang L, Sun Q, Li Q, Li X. Screening and characterization of an anti-inflammatory pectic polysaccharide from Cucurbita moschata Duch. Int J Biol Macromol 2024; 264:130510. [PMID: 38447847 DOI: 10.1016/j.ijbiomac.2024.130510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Pectin polysaccharides have demonstrated diverse biological activities, however, the inflammatory potential of pectin polysaccharides extracted from Cucurbita moschata Duch remains unexplored. This study aims to extract, characterize and evaluate the effects of pumpkin pectin polysaccharide on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 cells and dextran sulfate sodium (DSS)-induced colitis in mice, along with its underlying mechanism of action. Initially, we extracted three fractions of pectin polysaccharides from pumpkin and screened them for anti-inflammatory activity in LPS-induced macrophages, identifying CMDP-3a as the most potent anti-inflammatory fraction. Subsequently, CMDP-3a underwent comprehensive characterization through chromatography and spectroscopic analysis, revealing CMDP-3a as an RG-I-HG type pectin polysaccharide with →4)-α-D-GalpA-(1 → and →4)-α-D-GalpA-(1 → 2,4)-α-L-Rhap-(1 → as the main chain. Further, in the LPS-induced RAW264.7 cells model, treatment with CMDP-3a significantly down-regulated the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) by inhibiting the MAPK and NF-κB signaling pathways. Finally, in a mouse colitis model, CMDP-3a administration obviously inhibited DSS-induced pathological alterations and reduced inflammatory cytokine expressions in the colonic tissues by down-regulating the TLR4/NF-κB and MAPK pathways. These findings provide a molecular basis for the potential application of CMDP-3a in reducing inflammatory responses.
Collapse
Affiliation(s)
- Linlin Huang
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan 250014, PR China
| | - Qi Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xin Li
- The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan 250014, PR China; School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
10
|
Dallazen JL, Ciapparini PG, Maria-Ferreira D, da Luz BB, Klosterhoff RR, Felipe LPG, Silva BJG, Cordeiro LMC, Werner MFDP. Arabinan-rich pectic polysaccharide fraction from Malpighia emarginata fruits alleviates inflammatory pain in mice. Food Res Int 2024; 176:113743. [PMID: 38163695 DOI: 10.1016/j.foodres.2023.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Malpighia emarginata (Malpighiaceae), popularly known as "acerola", is a tropical and subtropical fruit native to the Americas. Despite its high vitamin C content, which gives it a high antioxidant property, soluble dietary fibers, such as polysaccharides, are also abundant constituents of acerola (10% of the dried fruit). The acerola cold-water soluble (ACWS) fraction presented anti-fatigue and antioxidant effects in vivo and in vitro. To infer further systemic effects of ACWS, this study aimed to investigate the antinociceptive, anti-inflammatory, and antioxidant effects of ACWS in murine models of pain. In formalin-induced nociception, ACWS (0.1, 1, and 10 mg/kg) reduced only the inflammatory phase, and also (10 and 30 mg/kg) attenuated the acetic acid-induced writhing and leukocyte migration in the peritoneal cavity. The mechanical allodynia and paw edema induced by intraplantar injection of carrageenan were greatly reduced by ACWS (10 mg/kg). At the inflammatory pick induced by carrageenan (4 h), ACWS significantly reduced myeloperoxidase activity, TNF-α, IL-1β, and PGE2 levels, and restored IL-10 levels. ACWS also exhibited antioxidant properties by decreasing lipid hydroperoxides content, increasing GSH levels, and restoring superoxide dismutase and catalase activities in the carrageenan model and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay. Collectively, these results support the antinociceptive, anti-inflammatory, and antioxidant effects of ACWS and reveal a promising candidate for the treatment of inflammatory pain conditions.
Collapse
Affiliation(s)
| | | | - Daniele Maria-Ferreira
- Department of Pharmacology, Federal University of Parana, Curitiba, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | | | | | | | | | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Brazil
| | | |
Collapse
|
11
|
Ma QY, Xu QD, Chen N, Zeng WC. A polysaccharide from Epiphyllum oxypetalum (DC.) Haw. and its immunomodulatory activity. Int J Biol Macromol 2023; 253:126792. [PMID: 37683740 DOI: 10.1016/j.ijbiomac.2023.126792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
A polysaccharide (EOP) from Epiphyllum oxypetalum (DC.) Haw. was isolated and identified, and its immunomodulatory activity was evaluated both in vitro and in vivo. By using multispectral analysis, EOP was determined to be composed of rhamnose, arabinose, galactose, and galacturonic acid at a molar ratio of 26.65:11.48:53.79:6.04, and its molecular weight was 5.77 × 106 Da. In addition, backbone structure of EOP was determined to consist of (1 → 4)-linked β-Galp, (1 → 2)-linked β-Rhap, (1 → 3,4)-linked β-Galp, (1 → 2,4)-linked β-Rhap and (1 → 4) -linked α-GalpA, terminating with t-β-Arap and t-β-Galp. The in vitro immunomodulatory activity assay on RAW 264.7 cell showed that EOP increased the proliferation of macrophages, enhanced its phagocytic capability, and promoted the production of cytokines including nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Furthermore, the in vivo evaluation on zebrafish showed that EOP could reduce the residual content of fluorescent microspheres in zebrafish, which indicated that EOP had the capability to enhance the macrophage phagocytosis. All results suggested that EOP showed a complex structure and exhibited significant immunomodulatory activity both in vitro and in vivo that had the potential to be utilized valuably in food and medicine industries.
Collapse
Affiliation(s)
- Qiu-Yue Ma
- Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Qian-Da Xu
- Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Nan Chen
- Department of Food Engineering, Sichuan University, Chengdu 610065, PR China
| | - Wei-Cai Zeng
- Department of Food Engineering, Sichuan University, Chengdu 610065, PR China; The Key Laboratory of Food Science and Technology of Sichuan Province of Education, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
12
|
Campo-Grande GC, da Luz BB, Maria-Ferreira D, de Paula Werner MF, Cipriani TR. Water-soluble polysaccharides from Piper regnellii (Pariparoba) leaves: Structural characterization and antinociceptive and anti-inflammatory activities. Carbohydr Polym 2023; 319:121142. [PMID: 37567686 DOI: 10.1016/j.carbpol.2023.121142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 08/13/2023]
Abstract
Piper regnellii is a plant popularly known as "Pariparoba" and it is widely used in folk medicine to treat pain, inflammation, among others. This work presents the extraction, purification and characterization of polysaccharides present in the plant leaves and evaluation of their anti-inflammatory and antinociceptive activities. From the crude aqueous extract of P. regnellii leaves, a polysaccharide fraction named PR30R, predominantly constituted of arabinose, galactose and galacturonic acid monosaccharide units, was obtained. Methylation and NMR analysis showed that the main polysaccharides of PR30R are a type II arabinogalactan, formed by a β-D-Galp-(1 → 3) main chain, substituted at O-6 by side chains of β-D-Galp-(1 → 6), which are substituted at O-3 by non-reducing α-L-Araf ends, and a homogalacturonan, formed by →4)-α-D-GalpA-(1→ units. Intraperitoneal administration of the crude polysaccharide fraction PRSF reduced significantly nociception induced by acetic acid in mice at the doses tested, and the PR30R fraction, derived from PRSF, presented antinociceptive and anti-inflammatory effects at a dose of 0.1096 mg/kg (PRSF ED50). These data support the use of the plant leaves in folk medicine as an herbal tea to treat pain and inflammation.
Collapse
Affiliation(s)
| | - Bruna Barbosa da Luz
- Pharmacology Department, Federal University of Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Daniele Maria-Ferreira
- Pharmacology Department, Federal University of Paraná, CEP 81.531-980, Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, 80250-060, PR, Brazil; Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba, 80230-020, PR, Brazil
| | | | - Thales Ricardo Cipriani
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CEP 81.531-980 Curitiba, PR, Brazil.
| |
Collapse
|
13
|
Cao W, Guan S, Yuan Y, Wang Y, Mst Nushrat Y, Liu Y, Tong Y, Yu S, Hua X. The digestive behavior of pectin in human gastrointestinal tract: a review on fermentation characteristics and degradation mechanism. Crit Rev Food Sci Nutr 2023; 64:12500-12523. [PMID: 37665605 DOI: 10.1080/10408398.2023.2253547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Pectin is widely spread in nature and it develops an extremely complex structure in terms of monosaccharide composition, glycosidic linkage types, and non-glycosidic substituents. As a non-digestible polysaccharide, pectin exhibits resistance to human digestive enzymes, however, it is easily utilized by gut microbiota in the large intestine. Currently, pectin has been exploited as a novel functional component with numerous physiological benefits, and it shows a promising prospect in promoting human health. In this review, we introduce the regulatory effects of pectin on intestinal inflammation and metabolic syndromes. Subsequently, the digestive behavior of pectin in the upper gastrointestinal tract is summarized, and then it will be focused on pectin's fermentation characteristics in the large intestine. The fermentation selectivity of pectin by gut bacteria and the effects of pectin structure on intestinal microecology were discussed to highlight the interaction between pectin and bacterial community. Meanwhile, we also offer information on how gut bacteria orchestrate enzymes to degrade pectin. All of these findings provide insights into pectin digestion and advance the application of pectin in human health.
Collapse
Affiliation(s)
- Weichao Cao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuyi Guan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuying Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuhang Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Yaxian Liu
- Department of Biotechnology and Enzyme Science, University of Hohenheim, Institute of Food Science and Biotechnology, Stuttgart, Germany
| | - Yanjun Tong
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuhuai Yu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Guangpeng L, Wu M, Li Y, Nageena Q, Li X, Zhang J, Wang C. The effect of different pretreatment methods on jujube juice and lactic acid bacteria-fermented jujube juice. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
15
|
Extraction, Characterization, and Antioxidant Activity of Polysaccharides from Ajwa Seed and Flesh. SEPARATIONS 2023. [DOI: 10.3390/separations10020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The date palm has been cultivated in dry and hot areas of the planet for much of human history. In the Kingdom of Saudi Arabia, dates are the main crop used as a source of food. Among several species of date fruits, the Ajwa AL-Madinah date is unique, growing only in Al-Madinah geographical region. The Ajwa date is used in traditional medicine due to its abundant active components and therapeutic properties. This study investigates the structural properties and the antioxidant effects of water-soluble polysaccharides extracted from Ajwa flesh and seed. The polysaccharides were isolated by two techniques including hot water and ultrasonic extraction. After isolation and partial purification, the physicochemical properties of four samples of polysaccharides extracted from flesh and seed were studied by several techniques including FTIR, solid-state NMR, elemental analysis, and mass spectrometry. Several radical scavenging experiments were combined to study the antioxidant activity of the polysaccharide compounds. FTIR and NMR results showed a structure typical of heterogeneous polysaccharides. Mass spectrometry revealed that the polysaccharide samples were composed mainly of mannose, glucose, galactose, xylose, arabinose, galacturonic acid, and fucose. In addition, the physicochemical properties and composition of polysaccharides extracted from flesh and seed were compared. The extracted polysaccharides showed antioxidant activity, with 2, 2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, Fe chelating ability, hydroxyl free radical scavenging ability, and 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging. These results highlight their potential to be a useful nutritional element or supplemental medication.
Collapse
|
16
|
Sun S, Lan W, Ji L, Ai L, Wu Y, Zhang H. A Homogalacturonan from Peel of Winter Jujube ( Zizyphus jujuba Mill. cv. Dongzao): Characterization and Protective Effects against CCl 4-Induced Liver Injury. Foods 2022; 11:foods11244087. [PMID: 36553828 PMCID: PMC9778428 DOI: 10.3390/foods11244087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
A homogalacturonan pectin (HG, designated as WJP-F80) was extracted from the peel of winter jujube (Zizyphus jujuba Mill. Cv. Dongzao) and separated via ethanol-graded precipitation. The structural and conformational features were elucidated through HPAEC-PAD, GC-MS, 2D NMR, and HPSEC-MALLS studies. In vivo assessments were carried out to evaluate the hepatoprotective effects of WJP-F80 against CCl4-induced injury of mice. Results showed that WJP-F80 was a linear 1,4-α-galacturonan with partially methyl-esterified at O-6 of GalpA and occasionally acetylation. The Mw of WJP-F80 was determined as 45.3 kDa, the polydispersity was calculated as 1.56, and the Rg was measured as 22.7 nm in 0.1 M NaNO3. The conformational analysis revealed that WJP-F80 exhibited as rigid stiff chain in low Mw range, while aggregation by self-assembly of HG chains lead to high Mw and random coil conformation. In vivo studies indicated that WJP-F80 can protect the livers of mice from acute injury induced via CCl4 by decreasing the serum biochemical markers of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to normal levels. This work provides a theoretical basis for the value-added deep processing of winter jujube.
Collapse
Affiliation(s)
- Shuguang Sun
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Wenzhong Lan
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Li Ji
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| |
Collapse
|
17
|
Liu T, Huang W, Zhao T, Nan L, Sun J, Liu Q, Huang L, Lin X, Gong G, Wang Z. Comparative analysis of the physicochemical properties and biological activities of Ziziphus Jujuba cv. Goutouzao polysaccharides obtained by fractional precipitation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Xu X, Li Z, Meng Y, Ma Q, Liu C, Zhang P, Chen K. Structural characterization and immunomodulatory activity of an acidic heteropolysaccharide isolated from the fermented burdock residue mediated by Rhizopus nigricans. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Liu C, Wang F, Zhang R. An Acidic Polysaccharide with Anti-Inflammatory Effects from Blackened Jujube: Conformation and Rheological Properties. Foods 2022; 11:foods11162488. [PMID: 36010488 PMCID: PMC9407416 DOI: 10.3390/foods11162488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
An acidic polysaccharide fraction (BJP-4) was isolated from blackened jujube, and its advanced structures and anti-inflammatory activity were investigated. X-ray diffraction showed that BJP-4 exhibits both crystalline and amorphous portions. Atomic force microscopy data suggested that it contains a large number of spherical lumps. Circular dichroism and Congo red experiments revealed that it has no triple-helix conformation. In steady shear flow results, the BJP-4 solution was a pseudoplastic non-Newtonian fluid with acid-base stability. BJP-4 (20 mg/mL) showed liquid-like properties (G″ > G′), while it performed weak gel-like behavior at a high concentration (40 mg/mL) (G′ > G″). The anti-inflammatory effects of BJP-4 were further evaluated through in vitro experiments. BJP-4 could down-regulate the over-secretion of inflammatory factors (NO, IL-6, IL-1β, TNF-α, iNOS and COX-2) in RAW264.7 cells due to LPS stimulation. Moreover, it demonstrated that BJP-4 restrained the NF-κB signal pathway by regulating TLR4 expression, reducing IκBα phosphorylation level and NF-κB p65 nuclear translocation. In summary, this present study contributes to the application of blackened jujube polysaccharides in the foods and medicine field.
Collapse
|
20
|
The Inclusion of Jujube By-Products in Animal Feed: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14137882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Given the increasing demands for the quality and safety of animal-derived foods and the strict regulations on the use of antibiotics in animal feed, the use of functional feed additives has attracted increasing research and development. Jujube fruit is an energy-rich food with antioxidant, antibacterial, and antidiarrheal properties. With the expanding areas of cultivation to jujube trees and the intensive processing of jujube in Asia, especially in China, a large number of jujube by-products are produced. These by-products are used widely in animal feed for pigs, chicken, cattle, goats, and fish, as they improve growth performance, promote digestive tract health, and enhance the quality of animal products. This article reviews the nutritional components and benefits of jujube by-products and their potential incorporation in animal feed. The aim of this review is to introduce jujube by-products as a novel supplement or partial dietary replacement in the animal feed industry.
Collapse
|
21
|
Structural characterization and anti-inflammatory activity of a pectin polysaccharide HBHP-3 from Houttuynia cordata. Int J Biol Macromol 2022; 210:161-171. [PMID: 35533845 DOI: 10.1016/j.ijbiomac.2022.05.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
Abstract
In this study, a hot buffer soluble Houttuynia cordata polysaccharide (HBHP-3) with a molecular weight of 397.4 kDa was isolated from H. cordata. HBHP-3 was composed of rhamnose, arabinose, glucose, galactose and galacturonic acid with molar ratio of 16.0:12.6:4.6:18.1:15.6. Structural analysis showed that the main chain of HBHP-3 was composed of →2)-α-L-Rhap-(1→, →4)-α-D-GalpA-(1→ and →4)-β-D-Galp-(1→. There were branched chains of α-L-Araf-(1→, →5)-α-L-Araf-(1→, →4)-α-D-Glcp-(1→, →6)-β-D-Galp-(1→, β-D-Galp-(1→ connected to the O-4 positions of →2)-α-L-Rhap-(1→. HBHP-3 effectively inhibited the secretion of NO and the mRNA expression of pro-inflammatory cytokines in a dose-dependent manner in macrophages. HBHP-3 inhibited the phosphorylation of p65 and IκBα proteins as well, illustrating that HBHP-3 exerted its anti-inflammatory activity by inhibiting the activation of NF-κB pathway.
Collapse
|
22
|
Comprehensive analysis of antibacterial and anti-hepatoma activity of metabolites from jujube fruit. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Zheng Q, Chen J, Yuan Y, Zhang X, Li L, Zhai Y, Gong X, Li B. Structural characterization, antioxidant, and anti-inflammatory activity of polysaccharides from Plumula Nelumbinis. Int J Biol Macromol 2022; 212:111-122. [PMID: 35594937 DOI: 10.1016/j.ijbiomac.2022.05.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/18/2022]
Abstract
A polysaccharide from Plumula Nelumbinis (PNP), was isolated and purified. PNP had a molecular weight of 450 kDa and consisted five monosaccharides, including rhamnose, galacturonic acid, xylose, galactose, and arabinose. The methylation and nuclear magnetic resonance (NMR) analysis revealed that the main glycosidic linkage types of PNP were →5)-α-L-Araf-(1→, →3)-β-D-Galp-(1→, β-D-Xylp-(→1, →3,4)-β-D-Rhap-(1→, →4)-β-D-GalpA-(1→. In the range of 25-1200 μg/mL, PNP had no cytotoxicity to RAW264.7 cells. PNP could protect RAW264.7 cell from oxidative damage by reducing the production of ROS and MDA and the secretion of LDH, enhancing the activity of SOD, CAT, and GSH-Px, and increasing the content of GSH. Anti-inflammatory activity experiments showed that PNP inhibited the expression of NO, TNF-α, INF-γ, IL-1β, and IL-6. PNP could inhibit the activation of MAPK/NF-κB cell pathways. PNP could be used as a potential natural antioxidant and anti-inflammatory substance in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Qingsong Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Juncheng Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Yi Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan, 523808, China
| | - Yongzhen Zhai
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Xiao Gong
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
24
|
Prunetinoside Inhibits Lipopolysaccharide-Provoked Inflammatory Response via Suppressing NF-κB and Activating the JNK-Mediated Signaling Pathway in RAW264.7 Macrophage Cells. Int J Mol Sci 2022; 23:ijms23105442. [PMID: 35628252 PMCID: PMC9140926 DOI: 10.3390/ijms23105442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Inflammation is a multifaceted response of the immune system at the site of injury or infection caused by pathogens or stress via immune cells. Due to the adverse effects of chemical drugs, plant-based compounds are gaining interest in current research. Prunetinoside or prunetin-5-O-glucoside (PUG) is a plant-based active compound, which possesses anti-inflammatory effects on immune cells. In this study, we investigate the effect of PUG on mouse macrophage RAW264.7 cells with or without stimulation of lipopolysaccharide (LPS). Cytotoxicity results showed that PUG is non-cytotoxic to the cells and it reversed the cytotoxicity in LPS-stimulated cells. The levels of nitric oxide (NO) and interleukin-6 (IL-6) were determined using a NO detection kit and IL-6 ELISA kit, respectively, and showed a significant decrease in NO and IL-6 in PUG-treated cells. Western blot and qRT-PCR were performed for the expression of two important pro-inflammatory cytokines, COX2 and iNOS, and found that their expression was downregulated in a dose-dependent manner. Other pro-inflammatory cytokines, such as IL-1β, IL-6, and TNFα, had reduced mRNA expression after PUG treatment. Furthermore, a Western blot was performed to calculate the expression of NF-κB and MAPK pathway proteins. The results show that PUG administration dramatically reduced the phosphorylation of p-Iκbα, p-NF-κB 65, and p-JNK. Remarkably, after PUG treatment, p-P38 and p-ERK remain unchanged. Furthermore, docking studies revealed that PUG is covalently linked to NF-κB and suppresses inflammation. In conclusion, PUG exerted the anti-inflammatory mechanism by barring the NF-κB pathway and activating JNK. Thus, prunetinoside could be adopted as a therapeutic compound for inflammatory-related conditions.
Collapse
|
25
|
Ruan J, Han Y, Kennedy JF, Jiang H, Cao H, Zhang Y, Wang T. A review on polysaccharides from jujube and their pharmacological activities. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Lu Q, Li R, Yang Y, Zhang Y, Zhao Q, Li J. Ingredients with anti-inflammatory effect from medicine food homology plants. Food Chem 2022; 368:130610. [PMID: 34419798 DOI: 10.1016/j.foodchem.2021.130610] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 07/13/2021] [Indexed: 02/09/2023]
Abstract
Inflammation occurs when the immune system responses to external harmful stimuli and infection. Chronic inflammation induces various diseases. A variety of foods are prescribed in the traditional medicines of many countries all over the world, which gave birth to the concept of medicine food homology. Over the past few decades, a number of secondary metabolites from medicine food homology plants have been demonstrated to have anti-inflammatory effects. In the present review, the effects and mechanisms of the medicine food homology plants-derived active components on relieving inflammation and inflammation-mediated diseases were summarized and discussed. The information provided in this review is valuable to future studies on anti-inflammatory ingredients derived from medicine food homology plants as drugs or food supplements.
Collapse
Affiliation(s)
- Qiuxia Lu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Rui Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yixi Yang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China
| | - Yujin Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jian Li
- School of Medicine, Chengdu University, Chengdu 610106, China; Institute of Cancer Biology and Drug Discovery, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
27
|
Tang Q, Chen S, Rizvi SAH, Qu J, Wang L, Wang S, Ma C, Liu L, Kang W. Two Alkaloids From Delphinium brunonianum Royle, Their Anti-inflammatory and Anti-oxidative Stress Activity via NF-κB Signaling Pathway. Front Nutr 2022; 8:826957. [PMID: 35127798 PMCID: PMC8812339 DOI: 10.3389/fnut.2021.826957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, we isolated and identified four compounds in Delphinium brunonianum Royle, and they were Delbrunine (1), 4-O-α-D-Glucosyl benzoic acid (2), Kaempferol 3-O-β-D-glucopyranoside 7-O-α-L-rhamnopyranoside (3) and Eldeline (4). Furthermore, the anti-inflammatory activity of these compounds was screened in RAW264.7 cells. The results showed that the anti-inflammatory activities of compounds 2 and 3 were weak, and 1, 4 had good anti-inflammatory activity. The macrophage inflammation model was established by lipopolysaccharide (LPS). Then, the anti-inflammatory activity was evaluated by ELISA kits, qRT-PCR experiment and western blot experiment. And the anti-oxidative stress activity was assessed by flow cytometry. The results showed that compounds 1, 4 could significantly inhibit the elevation of inflammatory factors nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and also had obvious inhibitory effects on the production of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2). In addition, compounds 1 and 4 could effectively inhibit the overexpression of reactive oxygen species (ROS) in RAW264.7 cells that activated by LPS. These results indicated that compounds 1 and 4 may exert anti-inflammatory and anti-oxidative stress effects through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qi Tang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | - Sitan Chen
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
| | | | - Jiaojiao Qu
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Li Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Senye Wang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
| | - Changyang Ma
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
- Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| | - Lijun Liu
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Huaihe Hospital, Henan University, Kaifeng, China
| | - Wenyi Kang
- National R&D Center for Edible Fungus Processing Technology, Henan University, Kaifeng, China
- Functional Food Engineering Technology Research Center, Kaifeng, China
- Joint International Research Laboratory of Food and Medicine Resource Function, Kaifeng, China
| |
Collapse
|
28
|
Wang J, Wang L, Zhou H, Liang XD, Zhang MT, Tang YX, Wang JH, Mao JL. The isolation, structural features and biological activities of polysaccharide from Ligusticum chuanxiong: A review. Carbohydr Polym 2021; 285:118971. [DOI: 10.1016/j.carbpol.2021.118971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
|
29
|
Li J, Huang G. Extraction, purification, separation, structure, derivatization and activities of polysaccharide from Chinese date. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Zhao S, Rong C, Gao Y, Wu L, Luo X, Song S, Liu Y, Wong JH, Wang H, Yi L, Ng T. Antidepressant-like effect of Ganoderma lucidum spore polysaccharide-peptide mediated by upregulation of prefrontal cortex brain-derived neurotrophic factor. Appl Microbiol Biotechnol 2021; 105:8675-8688. [PMID: 34716786 DOI: 10.1007/s00253-021-11634-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
A 28-kDa polysaccharide-peptide (PGL) with antidepressant-like activities was isolated from spores of the mushroom Ganoderma lucidum. It was unadsorbed on DEAE-cellulose. Its internal amino acid sequences manifested pronounced similarity with proteins from the mushrooms Lentinula edodes and Agaricus bisporus. The monosaccharides present in 28-kDa PGL comprised predominantly of glucose (over 90%) and much fewer galactose, mannose residues, and other residues. PGL manifested antidepressant-like activities as follows. It enhanced viability and DNA content in corticosterone-injured PC12 cells(a cell line derived from a pheochromocytoma of the rat adrenal medulla with an embryonic origin from the neural crest containing a mixture of neuroblastic cells and eosinophilic cells) and reduced LDH release. A single acute PGL treatment shortened the duration of immobility of mice in both tail suspension and forced swimming tests. PGL treatment enhanced sucrose preference and shortened the duration of immobility in mice exposed to chronic unpredictable mild stress (CUMS). Chronic PGL treatment reversed the decline in mouse brain serotonin and norepinephrine levels but did not affect dopamine levels. PGL decreased serum corticosterone levels and increased BDNF mRNA and protein levels and increased synapsin I and PSD95 levels in the prefrontal cortex. This effect was completely blocked by pretreatment with the BDNF antagonist K252a, indicating that PGL increased synaptic proteins in a BDNF-dependent manner.Key points• An antidepressive polysaccharide-peptide PGL was isolated from G. lucidum spores.• PGL protected PC12 nerve cells from the toxicity of corticosterone.• PGL upregulated BDNF expression and influenced key factors in the prefrontal cortex.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yi Gao
- Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, 100053, China
| | - Linfeng Wu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiaoheng Luo
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shuang Song
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yu Liu
- Institute of Plant and Environment Protection, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China.
| | - Litao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Fujian Province, 361021, Xiamen, China.
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, New Territories, China.
| |
Collapse
|
31
|
Zhou T, Jiang Y, Wen L, Yang B. Characterization of polysaccharide structure in Citrus reticulate 'Chachi' peel during storage and their bioactivity. Carbohydr Res 2021; 508:108398. [PMID: 34274819 DOI: 10.1016/j.carres.2021.108398] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
The peel of Citrus reticulate 'Chachiennsis' (Chachi) is widely accepted as a functional food. It is generally recognized that its health benefits are dependent on storage time. However, the chemicals responsible for this phenomonon remain unclear. As bioactive polysaccharides are dominant in Chachi, Chachi polysaccharides with various storage times (5-20 years) were prepared. The monosaccharide composition was analyzed by GC-MS. NMR data revealed that Chachi polysaccharides were mainly consisted of arabinogalacturonan and another pectin with side chain of →4)-β-D-Galp-(1 → . α-L-Araf-(1→, →5)-α-L-Araf-(1→, →4)-α-D-GalpA-(1→, →4)-α-D-GalpAMe-(1→, →4)-β-D-Galp-(1→ and →4)-β-D-Glcp-(1→ were detected. The molecular weight of Chachi polysaccharides decreased along with the extension of storage time. However, the basic structure characteristics remained stable. The immumomodulatory activities of Chachi polysaccharides were improved as the storage time extended. The change of molecular weight was responsible for the improved immunomodulatory activity. The results explained how polysaccharides contributed to the enhanced health benefits of Chachi during storage.
Collapse
Affiliation(s)
- Ting Zhou
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingrong Wen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Bao Yang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Hu H, Zhang S, Pan S. Characterization of Citrus Pectin Oligosaccharides and Their Microbial Metabolites as Modulators of Immunometabolism on Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8403-8414. [PMID: 34313419 DOI: 10.1021/acs.jafc.1c01445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We characterized the structure of prepared citrus pectin oligosaccharides (POS) and investigated the immunometabolism-modulating effects of POS and their microbial metabolites on human macrophages. Both POS and metabolites activated immune responses and exhibited anti-inflammatory properties in the presence of lipopolysaccharide (LPS) via regulating expressions of inflammatory cytokines and nuclear factor-kappa B. Cholesterol efflux was also facilitated via increased gene expressions of the liver X receptor-α-adenosine triphosphate-binding cassette transporter (ABC) A1/ABCG1 pathway and suppressed cholesterol synthesis via suppressing expressions of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Microbial degradation prevented POS from attenuating palmitoyl-3-cysteine-serine-lysine-4-induced inflammation and promoting M2 polarization, but it is capable of inhibiting cholesterol uptake-related genes CD36 and SR-A. These findings indicate that immunometabolism-modulating effects of POS are not solely microbiota-dependent effects. Both POS and their microbial metabolites are potential immunometabolism modulators via different mechanisms.
Collapse
Affiliation(s)
- Haijuan Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm 14152, Sweden
| | - Shanshan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
33
|
Chengxiao Y, Dongmei W, Kai Z, Hou L, Xiao H, Ding T, Liu D, Ye X, Linhardt RJ, Chen S. Challenges of pectic polysaccharides as a prebiotic from the perspective of fermentation characteristics and anti-colitis activity. Carbohydr Polym 2021; 270:118377. [PMID: 34364621 DOI: 10.1016/j.carbpol.2021.118377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022]
Abstract
Several studies are described that contribute to the systematic exploration of new aspects of digestion, fermentation, and biological activities of pectic polysaccharides (PPS) leading to a better understanding of prebiotics. Inflammatory bowel disease (IBD) is thought to be associated with the dysbacteriosis induced by different environmental agents in genetically susceptible persons. PPS are considered as an indispensable gut-microbiota-accessible carbohydrate that play a dominant role in maintaining gut microbiota balance and show a better effect in ameliorating IBD than some traditional prebiotics. The aim of this review is to summarize the fermentation characteristics of PPS, highlight its role in improving IBD, and propose a view that PPS may be a new and effective prebiotic.
Collapse
Affiliation(s)
- Yu Chengxiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Wu Dongmei
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Zhu Kai
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Lijuan Hou
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Shiguo Chen
- College of Biosystems, Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Huang L, Zhao J, Wei Y, Yu G, Li F, Li Q. Structural characterization and mechanisms of macrophage immunomodulatory activity of a pectic polysaccharide from Cucurbita moschata Duch. Carbohydr Polym 2021; 269:118288. [PMID: 34294314 DOI: 10.1016/j.carbpol.2021.118288] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022]
Abstract
A pectic polysaccharide (named CMDP-4b) with a molecular weight of 31.97 kDa was extracted from Cucurbita moschata Duch and purified by column chromatography. On the basis of methylation, Fourier-transform infrared, monosaccharide composition, and one- and two-dimensional nuclear magnetic resonance spectroscopy analyses, the structure of CMDP-4b was determined to be composed of an α-1,4-linked homogalacturonan backbone, which was slightly acetylated and highly methyl-esterified, and branched at the O-3 position of the →4)-α-D-GalpA-6-OMe-(1→. Immunomodulatory assays showed that CMDP-4b not only induced the secretion of nitrous oxide and cytokines (i.e. IL-1β, TNF-α, and IL-6) but also promoted pinocytic and phagocytic activities of macrophages, suggesting that CMDP-4b possessed immunomodulatory activity. Moreover, toll-like receptor 4 and complement receptor 3 may play a critical role in CMDP-4b-induced macrophage activation through the NF-κB and the MAPKs signaling pathways. Our study provides the molecular basis for the potential use of CMDP-4b as a natural immunostimulant.
Collapse
Affiliation(s)
- Linlin Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Yunlu Wei
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Guoyong Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Fei Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetables Processing, Beijing 100083, China.
| |
Collapse
|
35
|
Structural characterization and anti-inflammatory activity of a polysaccharide from the lignified okra. Carbohydr Polym 2021; 265:118081. [PMID: 33966845 DOI: 10.1016/j.carbpol.2021.118081] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 01/21/2023]
Abstract
The polysaccharide (AP1-b) of molecular weight 6.59 × 105 Da was isolated from lignified okra (Abelmoschus esculentus (L.) Moench) by hot-water extraction, 40 % ethanol precipitation and purified by DEAE Cellulose chromatography, respectively. The structure and anti-inflammatory activity of AP1-b were investigated. AP1-b was composed of galactose, rhamnose, gluctose, arabinose and galacturonic acid in a molar ratio of 1.98:1.00:0.15:0.32:0.29. The structural features showed that the AP1-b consisted of →2)-α-d-Rhap-(1→, →4)-β-d-Galp-(1→, →4)-α-d-GalpA-(1→, →6)-β-d-Galp-(1→, β-d-Glcp-(1→ and α-l-Araf-(1→. AP1-b could observably improve the inflammatory injury of LPS-induced RAW 264.7 cells by inhibiting the secretion of NO and decreasing the levels of pro-inflammatory factors (IL-1β, iNOS and TNF-α). AP1-b also inhibited the phosphorylation levels of IκB and p65 proteins, manifesting the anti-inflammatory activity of AP1-b may associated with inhibition of NF-κB signaling pathway. Therefore, AP1-b had potential value in treating inflammatory injury.
Collapse
|
36
|
Structural features and anti-inflammatory properties of pectic polysaccharides: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Zhang Y, Sun X, Vidyarthi SK, Zhang R. Active components and antioxidant activity of thirty-seven varieties of Chinese jujube fruits ( Ziziphus jujuba Mill.). INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1977656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yanlei Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai An, China
| | - Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai An, China
| | - Sriram K. Vidyarthi
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
- Department of Research and Development, the Morning Star Company, Woodland, California, USA
| | - Rentang Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai An, China
| |
Collapse
|
38
|
Wang Z, Liu X, Bao Y, Wang X, Zhai J, Zhan X, Zhang H. Characterization and anti-inflammation of a polysaccharide produced by Chaetomium globosum CGMCC 6882 on LPS-induced RAW 264.7 cells. Carbohydr Polym 2021; 251:117129. [DOI: 10.1016/j.carbpol.2020.117129] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
|
39
|
Rashwan AK, Karim N, Shishir MRI, Bao T, Lu Y, Chen W. Jujube fruit: A potential nutritious fruit for the development of functional food products. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104205] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
40
|
Ma G, Kimatu BM, Yang W, Pei F, Zhao L, Du H, Su A, Hu Q, Xiao H. Preparation of newly identified polysaccharide from Pleurotus eryngii and its anti-inflammation activities potential. J Food Sci 2020; 85:2822-2831. [PMID: 32794226 DOI: 10.1111/1750-3841.15375] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 12/01/2022]
Abstract
The anti-inflammatory effects of two newly identified Pleurotus eryngii polysaccharides (WPEP, NPEP) were determined in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in this study. Characterization analysis revealed that molecular weights of WPEP and NPEP were 167 and 274 kDa, and were mainly composed of glucose with β-type glycosidic linkages. WPEP and NPEP could significantly inhibit LPS-induced inflammatory responses by regulating the production of NO, Protaglandin E2 (PGE2 ), Interleukin-1β (IL-1β), Tumor necrosis factor-α (TNF-α), and Interleukin-6 (IL-6). This was through the blocking of the activation of Mitogen-activated protein kinase (MAPK) pathway by inhibiting phosphorylation of p38, extracellular regulation of protein kinases 1/2, and stress-activated protein kinase/jun aminoterminal kinase. Moreover, WPEP and NPEP inhibited NF-κB signaling by reducing nuclear translocation and phosphorylation of p65. Overall, our results, for the first time identified two P. eryngii polysaccharides and demonstrated the related anti-inflammatory effects, which indicated the favorable potential of P. eryngii polysaccharide as specific functional foods. PRACTICAL APPLICATION: This study prepared and characterized newly identified Pleurotus eryngii water-soluble polysaccharide fractions and elucidated the nutritional benefits, mainly the immune response related to anti-inflammatory activities by utilizing lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Collectively, results of this study suggested that the P. eryngii polysaccharide fractions could be considered as potential candidates for exploration in the development of new immunomodulatory agent or functional supplementary foods.
Collapse
Affiliation(s)
- Gaoxing Ma
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Benard Muinde Kimatu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.,Department of Dairy and Food Science and Technology, Egerton University, P.O. Box 536-20115, Egerton, Kenya
| | - Wenjian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, 01002, USA
| | - Anxiang Su
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, 210023, People's Republic of China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, 01002, USA
| |
Collapse
|
41
|
Niu J, Wang S, Wang B, Chen L, Zhao G, Liu S, Wang S, Wang Z. Structure and anti-tumor activity of a polysaccharide from Bletilla ochracea Schltr. Int J Biol Macromol 2020; 154:1548-1555. [DOI: 10.1016/j.ijbiomac.2019.11.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
|
42
|
Han X, Bai B, Zhou Q, Niu J, Yuan J, Zhang H, Jia J, Zhao W, Chen H. Dietary supplementation with polysaccharides from Ziziphus Jujuba cv. Pozao intervenes in immune response via regulating peripheral immunity and intestinal barrier function in cyclophosphamide-induced mice. Food Funct 2020; 11:5992-6006. [PMID: 32697211 DOI: 10.1039/d0fo00008f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ziziphus Jujuba cv. Pozao has been consumed as a traditional fruit with regional characteristics in China for a long time; however, fewer studies on polysaccharides from Ziziphus Jujuba cv. Pozao (JP) have been documented. This study aimed to evaluate the effect of oral administration of JP on cyclophosphamide-induced ICR mice for 28 days. The results showed that oral administration of JP could significantly improve the lymphocyte proliferation in the spleen and decrease the proportion of CD3+ and CD4+ and the ratio of CD4+/CD8+ in cyclophosphamide-induced mice in a dose-dependent manner. JP treatment also increased the levels of IL-2, IL-4, IL-10, IFN-γ, and TNF-α in serum and the intestine, and the improvement effects were proportional to the dose of JP. Similarly, JP significantly increased the levels of IgA and SIgA, as well as the expressions of Claudin-1 and Occludin in the intestine. Particularly, the expressions of Claudin-1 and Occludin were the best in the M-JP group. Furthermore, JP positively regulated the gut microbiota as indicated by the enriched microbiota diversity. At the phylum level, the relative abundance of Firmicutes was significantly decreased by JP, while that of Bacteroidetes was increased by JP treatment. More importantly, the ratio of Firmicutes/Bacteroidetes was significantly increased. And a high dose of JP is the most effective. At the genus level, the abundances of the Bacteroidales-S24-7-group, Lachnospiraceae, Alloprevotella, Alistipes and Bacteroides were increased by JP treatment. These results provided evidence for the regulating effect of JP on the peripheral immunity and intestinal barrier function in cyclophosphamide-induced hypoimmune mice.
Collapse
Affiliation(s)
- Xue Han
- Department of Nutritional and Food Safety, College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jin SC, Kim MH, Jo SY, Yoon Choi L, Lee H, Yang WM. Soshiho-tang protects LPS-induced acute liver injury by attenuating inflammatory response. J Nat Med 2020; 74:788-795. [PMID: 32533386 DOI: 10.1007/s11418-020-01421-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
Soshiho-tang (SSHT) has traditionally been used to treat gastrointestinal disorders. In this experiment, we investigated the protective effect of SSHT on inflammatory liver injury in lipopolysaccharide (LPS)-sensitized mice. Male C57BL/6J mice aged 6 weeks were randomly placed in 6 groups (n = 5): normal mice (CTR), LPS-sensitized mice (LPS), LPS-sensitized mice treated with dexamethasone (DEX) and LPS-sensitized mice treated with 0.05, 0.55, and 5.55 g/kg of SSHT (SSHT 0.05, SSHT 0.55, and SSHT 5.55). Various doses of SSHT was given once a day for 7 days. After 2 h of LPS injection, the liver tissue was collected. SSHT pretreatment recovered hemorrhage of liver tissues in LPS-induced acute liver injury. The expressions of MAP Kinase, NF-κB, IκBα, p-IκBα, COX-2, and iNOS protein levels were markedly decreased by SSHT-treated liver tissues. Additionally, SSHT pretreatment significantly regulated the expressions of MCP-1, TNF-α, and IL-6 cytokines. These results suggest the potential of SSHT on the protection of acute liver injury.
Collapse
Affiliation(s)
- Seong Chul Jin
- Department of Convergence Korean Medical Science, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mi Hye Kim
- Department of Convergence Korean Medical Science, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Si Yeon Jo
- Department of Convergence Korean Medical Science, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - La Yoon Choi
- Department of Convergence Korean Medical Science, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Haesu Lee
- Department of Convergence Korean Medical Science, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woong Mo Yang
- Department of Convergence Korean Medical Science, Graduate School, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
44
|
Yang Y, Ji J, Di L, Li J, Hu L, Qiao H, Wang L, Feng Y. Resource, chemical structure and activity of natural polysaccharides against alcoholic liver damages. Carbohydr Polym 2020; 241:116355. [PMID: 32507196 DOI: 10.1016/j.carbpol.2020.116355] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022]
Abstract
Many natural polysaccharides from bio-resources hold advantages of multi-functions, high efficiency, non-toxicity or low side effect, and have strong potentials in protection against alcoholic liver damages. This review summarized the bio-resources, chemical and structural characteristics of natural polysaccharides with potentials in inhibition against alcoholic liver damages, and also emphasized knowledge on correlations between their chemical structure and function. Approximately 95 species were confirmed in generation of hepatoprotective polysaccharides. Products as crude polysaccharides originated from 17 species were sum up despite the indetermination of their accurate structure. Additional four polysaccharides were described for their known chemical structures. Possible roles of hepatoprotective polysaccharides were provided with evidence on antioxidant promotion, lipids regulation, apoptosis inhibition and anti-inflammation, as well as confirmations in immune enhancement, iron removal and anti-fibrosis when currently treated against the alcoholic liver damages. To sum up, this overview could serve to guide development and utilization of natural hepatoprotective polysaccharides.
Collapse
Affiliation(s)
- Ying Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Jing Ji
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Lihong Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province, 210023, PR China; School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| | - Yibin Feng
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
45
|
Alkaline conditions better extract anti-inflammatory polysaccharides from winemaking by-products. Food Res Int 2020; 131:108532. [DOI: 10.1016/j.foodres.2019.108532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/12/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
|
46
|
Shi CC, Zhu HY, Li H, Zeng DL, Shi XL, Zhang YY, Lu Y, Ling LJ, Wang CY, Chen DF. Regulating the balance of Th17/Treg cells in gut-lung axis contributed to the therapeutic effect of Houttuynia cordata polysaccharides on H1N1-induced acute lung injury. Int J Biol Macromol 2020; 158:52-66. [PMID: 32353505 DOI: 10.1016/j.ijbiomac.2020.04.211] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Our previous study had demonstrated that oral administration of Houttuynia cordata polysaccharides (HCP) without in vitro antiviral activity ameliorated gut and lung injuries induced by influenza A virus (IAV) in mice. However, as macromolecules, HCP was hard to be absorbed in gastrointestinal tract and had no effect on lung injury when administrated intravenously. The action mechanism of HCP was thus proposed as regulating the gut mucosal-associated lymphoid tissue (GALT). Actually, HCP treatment restored the balance of Th17/Treg cells firstly in GALT and finally in the lung. HCP reduced the expression of chemokine CCL20 in the lung and regulated the balance of Th17/Treg carrying CCR6+ (the CCL20 receptor), which was associated with specific migration of Th17/Treg cells from GALT to lung. In vitro, HCP inhibited Th17 cell differentiation through the downregulation of phospho-STAT3, whereas it promoted Treg cell differentiation by upregulating phospho-STAT5. Furthermore, its therapeutic effect was abolished in RORγt-/- or Foxp3-/- mice. These findings indicated that oral administration of macromolecular polysaccharides like HCP might ameliorate lung injury in IAV infected mice via directly regulating the balance of Th17/Treg cells in gut-lung axis. Our results provided a potential mechanism underlying the therapeutic effect of polysaccharides on pulmonary infection.
Collapse
Affiliation(s)
- Chen-Chen Shi
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Hai-Yan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University.
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Dong-Lin Zeng
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xun-Long Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University
| | - Yun-Yi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Li-Jun Ling
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Chang-Yue Wang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Dao-Feng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Lin HC, Lin JY. Characterization of guava (Psidium guajava Linn) seed polysaccharides with an immunomodulatory activity. Int J Biol Macromol 2020; 154:511-520. [PMID: 32194116 DOI: 10.1016/j.ijbiomac.2020.03.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/09/2020] [Accepted: 03/15/2020] [Indexed: 02/08/2023]
Abstract
To clarify the property of a novel guava seed polysaccharide (GSPS), GSPS was subjected to purify using Sepharose 6B gel filtration chromatography and further characterize the property of each individual isolated fraction. GSPS further resolved into three purified fractions, guava seed polysaccharide fraction 1 (GSF1), GSF2 and GSF3. Isolated GSF1, GSF2 and GSF3 were respectively subjected to high performance size exclusion chromatography; molecular weights of three polysaccharide fractions were determined. GSPS, GSF1, GSF2 and GSF3 were suggested to be proteopolysaccharides or glycoproteins. GSPS, GSF1, GSF2 and GSF3, particularly GSF3, were found to have a Th2-inclination property and anti-inflammatory potential. Heated GSF3 did not significantly (P > .05) decreased its immunomodulatory activity, suggesting that GSF3 is a proteopolysaccharide. The deproteinated GSF3 markedly lost its immunomodulatory activity, suggesting that both protein and carbohydrate moiety in GSF3 are essential to its immunomodulatory function. Analyses of monosaccharides composition in GSF3 using a pre-column derivatization high performance liquid chromatography exhibited that GSF3 was composed of glucuronic acid (3.28%), galacturonic acid (28.13%), galactose (14.88%), mannose (3.96%), glucose (22.99%), arabinose (7.31%), ribose (1.55%), xylose (14.81%), fucose (1.68%) and rhamnose (1.43%). Overall, we evidence that GSF3 is a low molecular weight proteopolysaccharide with potent anti-inflammatory and immunomodulatory effects.
Collapse
Affiliation(s)
- Hsiao-Chien Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402, Taiwan, ROC
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City 402, Taiwan, ROC.
| |
Collapse
|
48
|
Juniperus pingii var. wilsonii acidic polysaccharide: Extraction, characterization and anticomplement activity. Carbohydr Polym 2020; 231:115728. [DOI: 10.1016/j.carbpol.2019.115728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/15/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
|
49
|
An advanced and universal method to high-efficiently deproteinize plant polysaccharides by dual-functional tannic acid-feIII complex. Carbohydr Polym 2019; 226:115283. [DOI: 10.1016/j.carbpol.2019.115283] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 01/18/2023]
|
50
|
Zhao S, Zhang S, Zhang W, Gao Y, Rong C, Wang H, Liu Y, Wong JH, Ng T. First demonstration of protective effects of purified mushroom polysaccharide-peptides against fatty liver injury and the mechanisms involved. Sci Rep 2019; 9:13725. [PMID: 31548551 PMCID: PMC6757109 DOI: 10.1038/s41598-019-49925-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
Fatty liver (FLD) disease is a consequence of metabolic syndrome, which is a health problem worldwide with a phenomenal rise in prevalence. In this study, two hepatoprotective polysaccharide-peptides were extracted from the mushroom Auricularia polytricha followed by chromatographic fractionation of the extract on the ion exchanger DEAE-cellulose and gel filtration on Sephadex-200 to yield two purified fractions: APPI and APPII. The monosaccharide compositions, FT-IR, N-terminal sequences, internal peptide sequences and molecular weights of the two fractions were determined. Furthermore, their hepatoprotective effect on human hepatoma HepG2 cells in vitro and in an animal model of fatty liver disease was evidenced by the findings that APPI and APPII diminished lipid deposit in cells, blood and the liver, increased cellular antioxidant activity and viability, and protected the liver against injury. The mechanistic study revealed that APPI and APPII activated the adiponectin pathway, up-regulated expression of genes controlling free fatty acid (FFA) oxidation, such as AMPK, CPTl, ACOX1 and PPARα genes, enhanced lipid metabolism, preserved hepatic function, promoted the antioxidant defense system and reduced lipid peroxidation. Hence the bioactive compounds of A. polytricha could serve as therapeutic agents in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Shuang Zhao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing, 100097, China
| | - Shuman Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Weiwei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yi Gao
- Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, 100053, China
| | - Chengbo Rong
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China.
| | - Yu Liu
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|