1
|
Mahomoodally MF, Coodian K, Hosenally M, Zengin G, Shariati MA, Abdalla AN, Alhazmi HA, Khuwaja G, Mohan S, Khalid A. Herbal remedies in the management of hyperuricemia and gout: A review of in vitro, in vivo and clinical evidences. Phytother Res 2024; 38:3370-3400. [PMID: 38655878 DOI: 10.1002/ptr.8211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Gout, or hyperuricemia is a multifactorial and multi-faceted metabolic disease that is quite difficult to manage and/or treat. Conventional therapies such as non-steroidal anti-inflammatory drugs (NSAIDs) such as allopurinol, corticosteroids and colchicine amongst others, have helped in its management and treatment to some extent. This study aimed to compile and analyze the different herbal remedies used in the management of hyperuricemia and gout. A literature search was conducted from key databases (PubMed, ScienceDirect, Cochrane Library, Google Scholar) using relevant keywords via the PRISMA model. Smilax riparia A.DC. from Traditional Chinese Medicine is used in many countries for its therapeutic effect on lowering serum urate levels. No single study was able to establish the efficacy of a specific traditionally used herb via in vitro, in vivo, and clinical studies. Patients were found to use a panoply of natural remedies, mainly plants to treat hyperuricemia and gout, which have been validated to some extent by in vitro, in vivo, and clinical studies. Nonetheless, further research is needed to better understand the ethnopharmacological relationship of such herbal remedies.
Collapse
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Kaisavadee Coodian
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Muzzammil Hosenally
- Department of Economics and Statistics, Faculty of Social Sciences & Humanities, University of Mauritius, Réduit, Mauritius
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Mohammad Ali Shariati
- Semey Branch of the Institute, Kazakh Research Institute of Processing and Food Industry, Almaty, Kazakhstan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum, Sudan
| |
Collapse
|
2
|
Unraveling the mystery of efficacy in Chinese medicine formula: New approaches and technologies for research on pharmacodynamic substances. ARAB J CHEM 2022; 15:104302. [PMID: 36189434 PMCID: PMC9514000 DOI: 10.1016/j.arabjc.2022.104302] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 12/25/2022] Open
Abstract
Traditional Chinese medicine (TCM) is the key to unlock treasures of Chinese civilization. TCM and its compound play a beneficial role in medical activities to cure diseases, especially in major public health events such as novel coronavirus epidemics across the globe. The chemical composition in Chinese medicine formula is complex and diverse, but their effective substances resemble "mystery boxes". Revealing their active ingredients and their mechanisms of action has become focal point and difficulty of research for herbalists. Although the existing research methods are numerous and constantly updated iteratively, there is remain a lack of prospective reviews. Hence, this paper provides a comprehensive account of existing new approaches and technologies based on previous studies with an in vitro to in vivo perspective. In addition, the bottlenecks of studies on Chinese medicine formula effective substances are also revealed. Especially, we look ahead to new perspectives, technologies and applications for its future development. This work reviews based on new perspectives to open horizons for the future research. Consequently, herbal compounding pharmaceutical substances study should carry on the essence of TCM while pursuing innovations in the field.
Collapse
Key Words
- 2D, Two Dimensional
- 3D, Three Dimensional
- ADME, Absorption, Distribution, Metabolism, and Excretion
- AFA DESI-MSI, Air flow-assisted desorption electrospray ionization mass spectrometry imaging
- AI, Artificial Intelligence
- Active ingredient
- CDE, Center for Drug Evaluation
- COX-2, Cyclooxygenase 2
- Chemical components
- Chinese medicine formula
- Compound
- Disease Targets
- GC-MS, Gas chromatography-mass spectrometry
- HPLC, High Performance Liquid Chromatography
- HR-MS, High Resolution Mass Spectrometry
- HTS, High Throughput Screening
- HUA, hyperuricemia
- ICPMS, inductively coupled plasma mass spectrometry
- MALDI MS, Matrix for surface-assisted laser desorption/ionization mass spectrometry
- MD, Microdialysis
- MI, Molecular imprinting
- MSI, Mass spectrometry imaging
- Mass Spectrometry
- NL/PR, Neutral loss/precursor ion
- NMPA, National Medical Products Administration
- OPLS-DA, Orthogonal partial least squares discriminant analysis
- PD, Pharmacodynamic
- PK, Pharmacokinetic
- Q-TOF/MS, Quadrupole time-of-flight mass spectrometry
- QSAR, Quantitative structure-activity relationship
- QqQ-MS, Triple quadruple mass spectrometry
- R-strategy, Reduce strategy
- TCM, Traditional Chinese medicine
- UF, Affinity ultrafiltration
- UPLC, Ultra Performance Liquid Chromatography
- XO, Xanthine oxidase
Collapse
|
3
|
Li J, Li J, Fan L. Recent Advances in Alleviating Hyperuricemia Through Dietary Sources: Bioactive Ingredients and Structure–activity Relationships. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2124414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jun Li
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jinwei Li
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Liuping Fan
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Zhai N, Chen Y, Wang C, Wu F, Luo X, Ju X, Liu H, Liu G. A multiscale screening strategy for the identification of novel xanthine oxidase inhibitors based on the pharmacological features of febuxostat analogues. NEW J CHEM 2022. [DOI: 10.1039/d2nj00115b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two compounds as potential XOI hits were identified by a novel screening strategy based on the pharmacophores of well-known scaffolds.
Collapse
Affiliation(s)
- Na Zhai
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yanming Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Chenchen Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, Henan Province, P. R. China
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Liu
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P. R. China
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
5
|
Li Y, Feng X, Zhang Y, Wang Y, Yu X, Jia R, Yu T, Zheng X, Chu Q. Dietary flavone from the Tetrastigma hemsleyanum vine triggers human lung adenocarcinoma apoptosis via autophagy. Food Funct 2021; 11:9776-9788. [PMID: 33078819 DOI: 10.1039/d0fo01997f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Among all types of cancers, lung cancer ranks first in morbidity and mortality, and non-small cell lung cancer (NSCLC) accounts for 80-85% of all lung cancer cases. Chemotherapy has shown promising results, but the accompanying side-effects cannot be neglected. Herein, we introduce novel flavones (TVF), which were characterized as 3-caffeoylquinic acid, 5-caffeoylquinic acid, quercetin-3-O-rutinoside, and kaempferol-3-O-rutinoside by UPLC-MS/MS, derived from the vine of Tetrastigma hemsleyanum (TV), a traditional Chinese herb and food. TVF exhibited outstanding anti-cancer abilities at the in vitro and in vivo level, and markedly triggered apoptosis via the Bax/Bcl-2/caspase-9/caspase-3 pathway. The intrinsic mechanism study illustrated that TVF might induce apoptosis by activating autophagy by inhibiting the Akt-mTOR pathway, and the main component of TVF, quercetin-3-O-rutinoside, enabled THR308 site binding to block the phosphorylation of Akt, which was further evidenced by molecular docking computation. Our study reveals the excellent anti-cancer ability and inner mechanism of TVF, suggesting TVF as a potential candidate for clinical drug exploitation or dietary supplementation in cancer medication and prevention, providing a promising strategy for cancer chemotherapy.
Collapse
Affiliation(s)
- Yonglu Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wan H, Han J, Tang S, Bao W, Lu C, Zhou J, Ming T, Li Y, Su X. Comparisons of protective effects between two sea cucumber hydrolysates against diet induced hyperuricemia and renal inflammation in mice. Food Funct 2020; 11:1074-1086. [DOI: 10.1039/c9fo02425e] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Differences in the anti-hyperuricemic and anti-inflammation effects between two sea cucumber hydrolysates in diet induced hyperuricemic mice.
Collapse
Affiliation(s)
- Haitao Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
- School of Marine Science
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
- School of Marine Science
| | - Shasha Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
- School of Marine Science
| | - Wei Bao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
- School of Marine Science
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
- School of Marine Science
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
- School of Marine Science
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
- School of Marine Science
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
- School of Marine Science
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products
- Ningbo University
- Ningbo
- China
- School of Marine Science
| |
Collapse
|
7
|
Two- and three-dimensional QSAR studies on hURAT1 inhibitors with flexible linkers: topomer CoMFA and HQSAR. Mol Divers 2019; 24:141-154. [PMID: 30868332 DOI: 10.1007/s11030-019-09936-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/01/2019] [Indexed: 12/20/2022]
Abstract
hURAT1 (human urate transporter 1) is a successful target for hyperuricemia. Recently, the modification work on hURAT1 inhibitors showed that the flexible linkers would benefit biological activity. The study aimed to investigate the contribution of the linkers and give modification strategies on this kind of structures based on QSAR models (HQSAR and topomer CoMFA). The most effective HQSAR and topomer CoMFA models were generated by applying the training set containing 63 compounds, with the cross-validated q2 values of 0.869/0.818 and the non-cross-validated correlation coefficients r2 of 0.951/0.978, respectively. The Y-randomization test was applied to ensure the robustness of the models. The external predictive correlation coefficient (rpred2) grounded on the external test set (21 compounds) of two models was 0.910 and 0.907, respectively. In addition, the models were validated by Golbraikh-Tropsha and Roy methods, as well as other statistical metrics. The results showed that both models were reliable. Topomer CoMFA steric/electrostatic contours and HQSAR atomic contribution maps illustrated the structural features which governed their inhibitory potency. The dependable results could provide important insights to guide the designing of more potential hURAT1 inhibitors.
Collapse
|
8
|
Pyrrole alkaloids and ergosterols from Grifola frondosa exert anti-α-glucosidase and anti-proliferative activities. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.02.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|