1
|
Häsler Gunnarsdottir S, Sommerauer L, Schnabel T, Oostingh GJ, Schuster A. Antioxidative and Antimicrobial Evaluation of Bark Extracts from Common European Trees in Light of Dermal Applications. Antibiotics (Basel) 2023; 12:antibiotics12010130. [PMID: 36671331 PMCID: PMC9854852 DOI: 10.3390/antibiotics12010130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Plant species have developed effective defense strategies for colonizing diverse habitats and protecting themselves from numerous attacks from a wide range of organisms, including insects, vertebrates, fungi, and bacteria. The bark of trees in particular constitutes a number of components that protect against unwanted intruders. This review focuses on the antioxidative, dermal immunomodulatory, and antimicrobial properties of bark extracts from European common temperate trees in light of various skin pathogens, wound healing, and the maintenance of skin health. The sustainability aspect, achieved by utilizing the bark, which is considered a byproduct in the forest industry, is addressed, as are various extraction methods applied to retrieve extracts from bark.
Collapse
Affiliation(s)
| | - Lukas Sommerauer
- Department of Forest Products Technology & Timber Constructions, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
- Salzburg Center for Smart Materials, c/o Department of Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria
- Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - Thomas Schnabel
- Department of Forest Products Technology & Timber Constructions, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
- Faculty of Furniture Design and Wood Engineering, Transilvania University of Brasov, B-dul. Eroilor nr. 29, 500036 Brasov, Romania
| | - Gertie Janneke Oostingh
- Biomedical Sciences, Salzburg University of Applied Sciences, Urstein Sued 1, 5412 Puch, Austria
| | - Anja Schuster
- Biomedical Sciences, Salzburg University of Applied Sciences, Urstein Sued 1, 5412 Puch, Austria
- Correspondence:
| |
Collapse
|
2
|
Chemical Characterisation, Antioxidant and Antibacterial Activities of Pinus pinaster Ait. and Pinus pinea L. Bark Polar Extracts: Prospecting Forestry By-Products as Renewable Sources of Bioactive Compounds. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020784] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Agroforestry by-products have gained rising attention in recent years as they represent inexpensive and abundant raw materials that are a source of added-value chemicals, e.g., for food and pharmaceutical applications, as well as for bioenergy generation. Pinus pinaster Ait. bark extracts are consumed worldwide for their cardiovascular benefits, whilst the health potential of Pinus pinea L. bark has not yet been deeply exploited. Therefore, this study highlights the chemical characterisation of Portuguese P. pinaster Ait. and P. pinea L. bark polar extracts, via ultra-high performance liquid chromatography-diode array detection-tandem mass spectrometry (UHPLC-DAD-MSn) analysis, and their antioxidant and antibacterial activities. Quinic acid, an A-type procyanidin dimer isomer, protocatechuic acid, and quercetin were identified for the first time as P. pinea L. bark components. Moreover, this bark demonstrated a higher total content of identified polar compounds than P. pinaster Ait. bark, with quinic acid being the most abundant compound identified. Regarding antioxidant activity, the pine bark polar extracts exhibited strong reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) radical scavenging effects compared to natural antioxidants. Moreover, the bactericidal actions of pine bark extracts were shown against Staphylococcus aureus and Escherichia coli at a 3.13–25 mg mL−1 range. Globally, these promising insights can boost the sustainable exploitation of P. pinea L. bark, as already occurs with P. pinaster Ait. bark, for the food and biomedical fields.
Collapse
|
3
|
UHPLC-HRMS Analysis of Fagus sylvatica (Fagaceae) Leaves: A Renewable Source of Antioxidant Polyphenols. Antioxidants (Basel) 2021; 10:antiox10071140. [PMID: 34356373 PMCID: PMC8301150 DOI: 10.3390/antiox10071140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
European beech (Fagus sylvatica L.) is a deciduous tree, widely distributed in Europe and largely appreciated for its wood and nutritive nuts. Beech leaf also enjoys food use as salad, but an understanding of its nutraceutical value is still far from being achieved. Indeed, and also taking into account beech leaf as a consistent biomass residue available beechwood production and use, it needs to be explored as a valuable renewable specialized source of bioactive molecules. In this context, an untargeted ultra-high-performance liquid chromatography hyphenated with high resolution mass spectrometry (UHPLC-HRMS) approach was favorably applied to a beech leaf alcoholic extract, which also was evaluated for its antiradical capability (by means of assays based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and [2,2’-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid)] (ABTS) radical cation) and its ferric ion reducing power. Redox mitochondrial activity towards Caco-2 cells paved the way to explore the extract’s capability to inhibit intracellular Reactive Oxygen Species (ROS) using 2’,7’dichlorofluorescin diacetate (DCFH-DA) assay. Hydroxycinnamoyl derivatives, mainly belonging to the chlorogenic acid class, and flavonoids were the main constituents. Uncommon flavanone C-glycosides were also found, together with a plentiful flavonol diversity. Cell-free and cell-based assays highlight its dose-dependent antioxidant efficacy, providing a foundation for further investigation of beech leaf constituents and its valorization and use as a reservoir of bioactive natural products with potential nutraceutical applications.
Collapse
|
4
|
Velderrain-Rodríguez GR, Quero J, Osada J, Martín-Belloso O, Rodríguez-Yoldi MJ. Phenolic-Rich Extracts from Avocado Fruit Residues as Functional Food Ingredients with Antioxidant and Antiproliferative Properties. Biomolecules 2021; 11:biom11070977. [PMID: 34356601 PMCID: PMC8301936 DOI: 10.3390/biom11070977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, the total phenolic compounds content and profile, the nutritional value, the antioxidant and antiproliferative activities of avocado peel, seed coat, and seed extracts were characterized. Additionally, an in-silico analysis was performed to identify the phenolic compounds with the highest intestinal absorption and Caco-2 permeability. The avocado peel extract possessed the highest content of phenolic compounds (309.95 ± 25.33 mMol GA/100 g of extract) and the lowest effective concentration (EC50) against DPPH and ABTS radicals (72.64 ± 10.70 and 181.68 ± 18.47, respectively). On the other hand, the peel and seed coat extracts had the lowest energy densities (226.06 ± 0.06 kcal/100 g and 219.62 ± 0.49 kcal/100 g, respectively). Regarding the antiproliferative activity, the avocado peel extract (180 ± 40 µg/mL) showed the lowest inhibitory concentration (IC50), followed by the seed (200 ± 21 µg/mL) and seed coat (340 ± 32 µg/mL) extracts. The IC50 of the extracts induced apoptosis in Caco-2 cells at the early and late stages. According to the in-silico analysis, these results could be related to the higher Caco-2 permeability to hydroxysalidroside, salidroside, sakuranetin, and luteolin. Therefore, this study provides new insights regarding the potential use of these extracts as functional ingredients with antioxidant and antiproliferative properties and as medicinal agents in diseases related to oxidative stress such as cancer.
Collapse
Affiliation(s)
- Gustavo R. Velderrain-Rodríguez
- Agrotecnio Center, Department of Food Technology, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (G.R.V.-R.); (O.M.-B.)
| | - Javier Quero
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (J.O.)
| | - Jesús Osada
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (J.O.)
- Department of Biochemistry and Molecular Cell Biology, Veterinary Faculty, University of Zaragoza, 50009 Zaragoza, Spain
- CIBERobn, ISCIII, IIS Aragón, IA2, 28029 Madrid, Spain
| | - Olga Martín-Belloso
- Agrotecnio Center, Department of Food Technology, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; (G.R.V.-R.); (O.M.-B.)
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, Forensic and Legal Medicine, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (J.Q.); (J.O.)
- CIBERobn, ISCIII, IIS Aragón, IA2, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-976-761649
| |
Collapse
|
5
|
Mármol I, Quero J, Ibarz R, Ferreira-Santos P, Teixeira JA, Rocha CM, Pérez-Fernández M, García-Juiz S, Osada J, Martín-Belloso O, Rodríguez-Yoldi MJ. Valorization of agro-food by-products and their potential therapeutic applications. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Bhardwaj K, Silva AS, Atanassova M, Sharma R, Nepovimova E, Musilek K, Sharma R, Alghuthaymi MA, Dhanjal DS, Nicoletti M, Sharma B, Upadhyay NK, Cruz-Martins N, Bhardwaj P, Kuča K. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules 2021; 26:3005. [PMID: 34070179 PMCID: PMC8158490 DOI: 10.3390/molecules26103005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers' phytochemicals and illustrates their potential role as drugs.
Collapse
Affiliation(s)
- Kanchan Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Vairão, 4485-655 Vila do Conde, Portugal;
- Center for Study in Animal Science (CECA), ICETA, University of Porto, 4051-401 Porto, Portugal
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria;
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11971, Saudi Arabia;
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, Square Aldo Moro, 5, 00185 Rome, Italy;
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India;
| | - Navneet Kumar Upadhyay
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Prerna Bhardwaj
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; (E.N.); (K.M.)
| |
Collapse
|
7
|
Grape Stem Extracts with Potential Anticancer and Antioxidant Properties. Antioxidants (Basel) 2021; 10:antiox10020243. [PMID: 33562442 PMCID: PMC7915920 DOI: 10.3390/antiox10020243] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
The application of plant extracts for therapeutic purposes has been used in traditional medicine because plants contain bioactive compounds with beneficial properties for health. Currently, the use of these compounds that are rich in polyphenols for the treatment and prevention of diseases such as cancer, diabetes, and cardiovascular diseases, many of them related to oxidative stress, is gaining certain relevance. Polyphenols have been shown to have antimutagenic, antioxidant, and anti-inflammatory properties. Therefore, the objective of the present work was to study the potential effect of grape stem extracts (GSE), rich in phenolic compounds, in the treatment of cancer, as well as their role in the prevention of this disease associated with its antioxidant power. For that purpose, three cancer lines (Caco-2, MCF-7, and MDA-MB-231) were used, and the results showed that grape stem extracts were capable of showing an antiproliferative effect in these cells through apoptosis cell death associated with a modification of the mitochondrial potential and reactive oxygen species (ROS) levels. Additionally, grape stem extracts showed an antioxidant effect on differentiated intestinal cells that could protect the intestine from diseases related to oxidative stress. Therefore, grape extracts contain bioactive principles with important biological properties and could be used as bio-functional food ingredients to prevent diseases or even to improve certain aspects of human health.
Collapse
|
8
|
Ferreira-Santos P, Ibarz R, Fernandes JM, Pinheiro AC, Botelho C, Rocha CMR, Teixeira JA, Martín-Belloso O. Encapsulated Pine Bark Polyphenolic Extract during Gastrointestinal Digestion: Bioaccessibility, Bioactivity and Oxidative Stress Prevention. Foods 2021; 10:foods10020328. [PMID: 33557122 PMCID: PMC7913864 DOI: 10.3390/foods10020328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Polyphenolic extracts from pine bark have reported different biological actions and promising beneficial effects on human health. However, its susceptibility to environmental stresses (temperature, storage, etc.) and physiological human conditions prequires the development of efficient protection mechanisms to allow effective delivering of functionality. The aim of this work was to encapsulate pine bark extract rich phenolic compounds by spray-drying using maltodextrin, and understand the influence of encapsulation on the antioxidant and antimicrobial activity and bioaccessibility of phenolic compounds during gastrointestinal digestion. The optimized process conditions allowed good encapsulation efficiency of antioxidant phenolic compounds. The microencapsulation was effective in protecting those compounds during gastrointestinal conditions, controlling their delivery and enhancing its health benefits, decreasing the production of reactive oxygen species implicated in the process of oxidative stress associated with some pathologies. Finally, this encapsulation system was able to protect these extracts against acidic matrices, making the system suitable for the nutritional enrichment of fermented foods or fruit-based beverages, providing them antimicrobial protection, because the encapsulated extract was effective against Listeria innocua. Overall, the designed system allowed protecting and appropriately delivering the active compounds, and may find potential application as a natural preservative and/or antioxidant in food formulations or as bioactive ingredient with controlled delivery in pharmaceuticals or nutraceuticals.
Collapse
Affiliation(s)
- Pedro Ferreira-Santos
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.-M.F.); (A.C.P.); (C.B.); (C.M.R.R.)
| | - Raquel Ibarz
- Agrotecnio Center, Department of Food Technology, University of Lleida, 25003 Lleida, Spain; (R.I.); (O.M.-B.)
| | - Jean-Michel Fernandes
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.-M.F.); (A.C.P.); (C.B.); (C.M.R.R.)
| | - Ana Cristina Pinheiro
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.-M.F.); (A.C.P.); (C.B.); (C.M.R.R.)
| | - Cláudia Botelho
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.-M.F.); (A.C.P.); (C.B.); (C.M.R.R.)
| | - Cristina M. R. Rocha
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.-M.F.); (A.C.P.); (C.B.); (C.M.R.R.)
| | - José António Teixeira
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (P.F.-S.); (J.-M.F.); (A.C.P.); (C.B.); (C.M.R.R.)
- Correspondence: ; Tel.: +351-253604406
| | - Olga Martín-Belloso
- Agrotecnio Center, Department of Food Technology, University of Lleida, 25003 Lleida, Spain; (R.I.); (O.M.-B.)
| |
Collapse
|
9
|
In vitro antimicrobial, antioxidant and anticancer activities of globe artichoke (Cynara cardunculus var. scolymus L.) bracts and receptacles ethanolic extract. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Ferreira-Santos P, Zanuso E, Genisheva Z, Rocha CMR, Teixeira JA. Green and Sustainable Valorization of Bioactive Phenolic Compounds from Pinus By-Products. Molecules 2020; 25:molecules25122931. [PMID: 32630539 PMCID: PMC7356352 DOI: 10.3390/molecules25122931] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/17/2023] Open
Abstract
In Europe, pine forests are one of the most extended forests formations, making pine residues and by-products an important source of compounds with high industrial interest as well as for bioenergy production. Moreover, the valorization of lumber industry residues is desirable from a circular economy perspective. Different extraction methods and solvents have been used, resulting in extracts with different constituents and consequently with different bioactivities. Recently, emerging and green technologies as ultrasounds, microwaves, supercritical fluids, pressurized liquids, and electric fields have appeared as promising tools for bioactive compounds extraction in alignment with the Green Chemistry principles. Pine extracts have attracted the researchers’ attention because of the positive bioproperties, such as anti-inflammatory, antimicrobial, anti-neurodegenerative, antitumoral, cardioprotective, etc., and potential industrial applications as functional foods, food additives as preservatives, nutraceuticals, pharmaceuticals, and cosmetics. Phenolic compounds are responsible for many of these bioactivities. However, there is not much information in the literature about the individual phenolic compounds of extracts from the pine species. The present review is about the reutilization of residues and by-products from the pine species, using ecofriendly technologies to obtain added-value bioactive compounds for industrial applications.
Collapse
|
11
|
Ferreira-Santos P, Genisheva Z, Botelho C, Santos J, Ramos C, Teixeira JA, Rocha CM. Unravelling the Biological Potential of Pinus pinaster Bark Extracts. Antioxidants (Basel) 2020; 9:antiox9040334. [PMID: 32325962 PMCID: PMC7222395 DOI: 10.3390/antiox9040334] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/23/2023] Open
Abstract
Natural compounds from agro-food by-products have fostered interest in food industries. The aim of this study was to unravel potential uses for Pinus pinaster bark extracts (PBE). As functional features of this type of extracts are usually attributed to phenolic compounds, the extraction process was studied. Different PBEs were achieved, with high content in phenolic compounds, using different water/ethanol combinations as a solvent. These PBEs were chemically characterized, and their bioactivity and in vitro cell viability were evaluated. Extracts obtained with hydroethanolic solvents had higher content in phenolic and flavonoid compounds. All the PBEs presented high antioxidant, antibacterial and antihyperglycemic activities. Moreover, PBEs have low cytotoxicity and a selective activity against cancer cells as these were negatively affected. These features may allow the extracts to be used in food formulation and processing (as preservatives, antioxidants or bioactive ingredients), but they showed also potential for the pharmaceutical or nutraceutical sectors.
Collapse
Affiliation(s)
- Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (P.F.-S.); (C.M.R.R.); Tel.: +351-253-604-426; (P.F.-S.); +351-253-604-423 (C.M.R.R.)
| | - Zlatina Genisheva
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Joana Santos
- CISAS—Centro de Investigação e Desenvolvimento em Sistemas Agroalimentares e Sustentabilidade, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Carla Ramos
- CISAS—Centro de Investigação e Desenvolvimento em Sistemas Agroalimentares e Sustentabilidade, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristina M.R. Rocha
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (P.F.-S.); (C.M.R.R.); Tel.: +351-253-604-426; (P.F.-S.); +351-253-604-423 (C.M.R.R.)
| |
Collapse
|
12
|
Iftikhar M, Iftikhar A, Zhang H, Gong L, Wang J. Transport, metabolism and remedial potential of functional food extracts (FFEs) in Caco-2 cells monolayer: A review. Food Res Int 2020; 136:109240. [PMID: 32846508 DOI: 10.1016/j.foodres.2020.109240] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/28/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
Abstract
Caco-2, a human intestinal carcinoma cell line, has been used to test the absorption and transport mechanism of functional foods and drugs across the intestinal epithelium in order to study their antioxidant, anticancer and anti-inflammatory activities. Caco-2 cells represent the morphological and functional characteristics of small intestinal cells and capable of expressing brush borders, tight junctions, intestinal efflux and uptake transporters which regulate permeation of drugs and functional food extracts from intestinal lumen to systemic circulation. The integrity of the Caco-2 monolayer is controlled by establishing the TEER between 200 and 1000 O per cm2. FFEs affect intestinal permeability by adjusting the tight junction proteins between the cells in order to maintain the epithelial barrier function. Because of the side effects of medicines, there is an increased interest in functional food extracts (FFEs) as drug substitutes. Functional foods undergo intricate transport processes and biotransformation after oral administration. Metabolism and transport studies of FFEs in Caco-2 cells are very important for determining their bioavailability. Functional foods and their constituents produce anti-proliferative and anti-cancer effects through apoptosis, cell cycle arrest and inhibition of various signal transduction pathways across Caco-2 cell lines. The current review has summarized the anti-inflammation, anticancer, antioxidant and cholesterol lowering potential of FFEs using Caco-2 cells through reducing local inflammatory signals, production of ROS and lipid accumulation. The transport, bioavailability, metabolism, mechanisms of actions, cellular pathways adopted by FFEs across Caco-2 cell lines are predominantly affected by their molecular weight, structures and physicochemical properties. These studies are beneficial for investigating the different mechanisms of action of FFEs in the human body.
Collapse
Affiliation(s)
- Maryam Iftikhar
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad (TUF), Faisalabad 38000, Pakistan
| | - Huijuan Zhang
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China.
| | - Lingxiao Gong
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, China-Canada Joint Lab of Food Nutrition and Health, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|
13
|
Jiménez-Moreno N, Cimminelli MJ, Volpe F, Ansó R, Esparza I, Mármol I, Rodríguez-Yoldi MJ, Ancín-Azpilicueta C. Phenolic Composition of Artichoke Waste and its Antioxidant Capacity on Differentiated Caco-2 Cells. Nutrients 2019; 11:nu11081723. [PMID: 31349733 PMCID: PMC6723629 DOI: 10.3390/nu11081723] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Artichoke waste represents a huge amount of discarded material. This study presents the by-products (bracts, exterior leaves, and stalks) of the "Blanca de Tudela" artichoke variety as a potential source of phenolic compounds with promising antioxidant properties. Artichoke residues were subjected to different extraction processes, and the antioxidant capacity and phenolic composition of the extracts were analyzed by spectrophotometric methods and high performance liquid chromatography (HPLC) analyses, respectively. The most abundant polyphenols in artichoke waste were chlorogenic acid, luteolin-7-O-rutinoside, and luteolin-7-O-glucoside. Minor quantities of cynarin, luteolin, apigenin-7-O-glucoside, apigenin-7-O-rutinoside, and naringenin-7-O-glucoside were also found. The antioxidant activity of the obtained extracts determined by ABTS [2, 2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid)], DPPH (2,2-diphenyl-1-pycrilhydracyl), and FRAP (Ferric Ion Reducing Antioxidant Power) was highly correlated with the total concentration of phenolic compounds. Chlorogenic acid, luteolin-7-O-glucoside, and luteolin-7-O-rutinoside, the most abundant compounds in 60% methanol extracts, are the components most responsible for the antioxidant activity of the artichoke waste extracts. The extract with the best antioxidant capacity was selected to assay its antioxidant potential on a model intestinal barrier. This action of the hydroxycinnamic acids on intestinal cells (Caco-2) was confirmed. In summary, artichoke waste may be considered a very interesting ingredient for food functionalization and for therapeutic purposes.
Collapse
Affiliation(s)
- Nerea Jiménez-Moreno
- Department of Sciences, InaMat, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - María José Cimminelli
- Department of Sciences, InaMat, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Francesca Volpe
- Department of Sciences, InaMat, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Raul Ansó
- Department of Sciences, InaMat, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Irene Esparza
- Department of Sciences, InaMat, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain
| | - Inés Mármol
- Department. of Pharmacology and Physiology, Veterinary Faculty, C/ Miguel Servet 177, University of Zaragoza, 50013 Zaragoza, CIBERobn (ISCIII), IIS Aragón, IA2 Zaragoza, Spain
| | - María Jesús Rodríguez-Yoldi
- Department. of Pharmacology and Physiology, Veterinary Faculty, C/ Miguel Servet 177, University of Zaragoza, 50013 Zaragoza, CIBERobn (ISCIII), IIS Aragón, IA2 Zaragoza, Spain
| | - Carmen Ancín-Azpilicueta
- Department of Sciences, InaMat, Universidad Pública de Navarra, Campus Arrosadía s/n, 31006 Pamplona, Spain.
| |
Collapse
|