1
|
Wu M, Wang Q, Zhang H, Pan Z, Zeng Q, Fang W, Mao J, Li J, Wu H, Qiu Z. Performance and mechanism of co-culture of Monascus purpureus, Lacticaseibacillus casei, and Saccharomyces cerevisiae to enhance lovastatin production and lipid-lowering effects. Bioprocess Biosyst Eng 2023; 46:1411-1426. [PMID: 37688635 DOI: 10.1007/s00449-023-02903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/04/2023] [Indexed: 09/11/2023]
Abstract
To facilitate lipid-lowering effects, a lovastatin-producing microbial co-culture system (LPMCS) was constituted with a novel strain Monascus purpureus R5 in combination with Lacticaseibacillus casei S5 and Saccharomyces cerevisiae J7, which increased lovastatin production by 54.21% compared with the single strain R5. Response Surface Methodology (RSM) optimization indicated lovastatin yield peaked at 7.43 mg/g with a fermentation time of 13.88 d, water content of 50.5%, and inoculum ratio of 10.27%. Meanwhile, lovastatin in LPMCS co-fermentation extracts (LFE) was qualitatively and quantitatively analyzed by Thin-Layer Chromatography (TLC) and High-Performance Liquid Chromatography (HPLC). Cellular experiments demonstrated that LFE exhibited no obvious cytotoxicity to L-02 cells and exhibited excellent biosafety. Most notably, high-dose LFE (100 mg/L) exhibited the highest reduction of lipid accumulation, total cholesterol, and triglycerides simultaneously in oleic acid-induced L-02 cells, which decreased by 71.59%, 38.64%, and 58.85% than untreated cells, respectively. Overall, LPMCS provides a potential approach to upgrade the lipid-lowering activity of Monascus-fermented products with higher health-beneficial effects.
Collapse
Affiliation(s)
- Minghui Wu
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Qiqi Wang
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Han Zhang
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Zhengyong Pan
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Qilu Zeng
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Weizhen Fang
- Analysis & Testing Center, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Jilong Mao
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
- Chengdu Nuohe Shengtai Biotechnology Co., Ltd, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jianpeng Li
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Han Wu
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China
| | - Zhongping Qiu
- School of Life Science and Engineering, Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, Southwest Jiaotong University, No. 111 Second Ring Road, Chengdu, 610031, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Nie J, Fu X, Wang L, Xu J, Gao X. Impact of Monascus purpureus fermentation on antioxidant activity, free amino acid profiles and flavor properties of kelp (Saccharina japonica). Food Chem 2023; 400:133990. [PMID: 36063678 DOI: 10.1016/j.foodchem.2022.133990] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/24/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
Abstract
This study evaluated the efficacy of Monascus purpureus fermentation on Saccharina japonica (SJ). Healthy substances and antioxidant activity of fermented SJ (FSJ) were determined. Results showed that fermentation caused the release of phenolic compounds and flavonoids, which resulted in the enhancement of antioxidant activity. Essential amino acids and γ-aminobutyric acid also greatly accumulated in FSJ. Sensory evaluation and gas chromatography-ion mobility spectrometry (GC-IMS) were used to evaluate flavor properties of FSJ. A lexicon consisted of 24 descriptors was established for SJ and FSJ, of which 14 descriptors were regarded as odor attributes. A total of 46 volatile compounds were identified by GC-IMS and showed positive correlation with odor attributes. Fifteen volatile compounds were screened as key compounds, tricarboxylic acid cycle, embden-meyerhof-parnas and amino acid catabolism were main formation metabolisms of them. Advanced properties of FSJ indicated that fermentation is a promising approach for the production of SJ food.
Collapse
Affiliation(s)
- Jinlan Nie
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China
| | - Xiaoting Fu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China.
| | - Lei Wang
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China
| | - Jiachao Xu
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China
| | - Xin Gao
- College of Food Science & Engineering, Ocean University of China, 5th Yushan Road, Qingdao, Shandong 266003, China
| |
Collapse
|
3
|
Nie J, Fu X, Wang L, Xu J, Gao X. A systematic review of fermented Saccharina japonica: Fermentation conditions, metabolites, potential health benefits and mechanisms. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
4
|
Zhang C, Kim E, Cui J, Wang Y, Lee Y, Zhang G. Influence of the ecological environment on the structural characteristics and bioactivities of polysaccharides from alfalfa ( Medicago sativa L.). Food Funct 2022; 13:7029-7045. [DOI: 10.1039/d2fo00371f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polysaccharides from alfalfa (Medicago sativa L.) (APS) exhibit a variety of bioactivities; however, little information is available on the effects of the ecological environment on the structural characteristics and bioactivities of APS.
Collapse
Affiliation(s)
- Chongyu Zhang
- Department of Nutrition and China-Korea Joint R&D center on Plant-derived polysaccharide, Shandong Agricultural University, 61 Daizong Street, Taian City 271018, China
| | - Eunyoung Kim
- Department of Food Science and Nutrition, and Korea-China Joint R&D center on Plant-derived polysaccharide, Jeju National University, Jeju 63243, South Korea
| | - Jiamei Cui
- Department of Food Science and Nutrition, and Korea-China Joint R&D center on Plant-derived polysaccharide, Jeju National University, Jeju 63243, South Korea
| | - Yunpeng Wang
- Department of Nutrition and China-Korea Joint R&D center on Plant-derived polysaccharide, Shandong Agricultural University, 61 Daizong Street, Taian City 271018, China
| | - Yunkyoung Lee
- Department of Food Science and Nutrition, and Korea-China Joint R&D center on Plant-derived polysaccharide, Jeju National University, Jeju 63243, South Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, South Korea
| | - Guiguo Zhang
- Department of Nutrition and China-Korea Joint R&D center on Plant-derived polysaccharide, Shandong Agricultural University, 61 Daizong Street, Taian City 271018, China
| |
Collapse
|
5
|
Reboleira J, Silva S, Chatzifragkou A, Niranjan K, Lemos MF. Seaweed fermentation within the fields of food and natural products. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|