1
|
Bin Hafeez A, Pełka K, Worobo R, Szweda P. In Silico Safety Assessment of Bacillus Isolated from Polish Bee Pollen and Bee Bread as Novel Probiotic Candidates. Int J Mol Sci 2024; 25:666. [PMID: 38203838 PMCID: PMC10780176 DOI: 10.3390/ijms25010666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Bacillus species isolated from Polish bee pollen (BP) and bee bread (BB) were characterized for in silico probiotic and safety attributes. A probiogenomics approach was used, and in-depth genomic analysis was performed using a wide array of bioinformatics tools to investigate the presence of virulence and antibiotic resistance properties, mobile genetic elements, and secondary metabolites. Functional annotation and Carbohydrate-Active enZYmes (CAZYme) profiling revealed the presence of genes and a repertoire of probiotics properties promoting enzymes. The isolates BB10.1, BP20.15 (isolated from bee bread), and PY2.3 (isolated from bee pollen) genome mining revealed the presence of several genes encoding acid, heat, cold, and other stress tolerance mechanisms, adhesion proteins required to survive and colonize harsh gastrointestinal environments, enzymes involved in the metabolism of dietary molecules, antioxidant activity, and genes associated with the synthesis of vitamins. In addition, genes responsible for the production of biogenic amines (BAs) and D-/L-lactate, hemolytic activity, and other toxic compounds were also analyzed. Pan-genome analyses were performed with 180 Bacillus subtilis and 204 Bacillus velezensis genomes to mine for any novel genes present in the genomes of our isolates. Moreover, all three isolates also consisted of gene clusters encoding secondary metabolites.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA;
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland; (A.B.H.); (K.P.)
| |
Collapse
|
2
|
Aghakhani A, Hezave MB, Rasouli A, Saberi Rounkian M, Soleimanlou F, Alhani A, Sabet Eqlidi N, Pirani M, Mehrtabar S, Zerangian N, Pormehr-Yabandeh A, Keylani K, Tizro N, Deravi N. Endoplasmic Reticulum as a Therapeutic Target in Cancer: Is there a Role for Flavonoids? Curr Mol Med 2024; 24:298-315. [PMID: 36959143 DOI: 10.2174/1566524023666230320103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/25/2023]
Abstract
Flavonoids are classified into subclasses of polyphenols, a multipurpose category of natural compounds which comprises secondary metabolites extracted from vascular plants and are plentiful in the human diet. Although the details of flavonoid mechanisms are still not realized correctly, they are generally regarded as antimicrobial, anti-fungal, anti-inflammatory, anti-oxidative; anti-mutagenic; anti-neoplastic; anti-aging; anti-diabetic, cardio-protective, etc. The anti-cancer properties of flavonoids are evident in functions such as prevention of proliferation, metastasis, invasion, inflammation and activation of cell death. Tumors growth and enlargement expose cells to acidosis, hypoxia, and lack of nutrients which result in endoplasmic reticulum (ER) stress; it triggers the unfolded protein response (UPR), which reclaims homeostasis or activates autophagy. Steady stimulation of ER stress can switch autophagy to apoptosis. The connection between ER stress and cancer, in association with UPR, has been explained. The signals provided by UPR can activate or inhibit anti-apoptotic or apoptotic pathways depending on the period and grade of ER stress. In this review, we will peruse the link between flavonoids and their impact on the endoplasmic reticulum in association with cancer therapy.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soleimanlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Alhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Sabet Eqlidi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Pirani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasibeh Zerangian
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asiyeh Pormehr-Yabandeh
- Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Cárdenas-Escudero J, Mármol-Rojas C, Escribano Pintor S, Galán-Madruga D, Cáceres JO. Honey polyphenols: regulators of human microbiota and health. Food Funct 2023; 14:602-620. [PMID: 36541681 DOI: 10.1039/d2fo02715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive review of research over the last decade was conducted to carry out this work. The main objective of this work is to present relevant evidence of the effect of honey intake on the human intestinal microbiota and its relationship with the improvement of various chronic diseases, such as cirrhosis, metabolic syndrome, diabetes, and obesity, among others. Therefore, this work focuses on the health-improving honey dietary supplementation implications associated with specific changes in the human microbiota and their biochemical mechanisms to enhance the proliferation of beneficial microorganisms and the inhibition of pathogenic microorganisms. Consumption of honey polyphenols significantly improves people's health conditions, especially in patients with chronic disease. Hence, honey intake unequivocally constitutes an alternative way to enhance health and could be used to prevent some relevant chronic diseases.
Collapse
Affiliation(s)
- J Cárdenas-Escudero
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain. .,Analytical Chemistry Department, FCNET, Universidad de Panamá, Bella Vista, Manuel E. Batista and José De Fábrega av., Ciudad Universitaria, Estafeta Universitaria, 3366, Panamá 4, Panamá
| | - C Mármol-Rojas
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - S Escribano Pintor
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| | - D Galán-Madruga
- National Centre for Environmental Health. Carlos III Health Institute, Ctra. Majadahonda-Pozuelo km 2.2, 28220 Majadahonda, Madrid, Spain
| | - J O Cáceres
- Laser Chemistry Research Group, Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza de Ciencias 1, 28040 Madrid, Spain.
| |
Collapse
|
4
|
Caredda M, Mara A, Ciulu M, Floris I, Pilo MI, Spano N, Sanna G. Use of genetic algorithms in the wavelength selection of FT-MIR spectra to classify unifloral honeys from Sardinia. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Morales D. Use of Strawberry Tree ( Arbutus unedo) as a Source of Functional Fractions with Biological Activities. Foods 2022; 11:foods11233838. [PMID: 36496646 PMCID: PMC9736438 DOI: 10.3390/foods11233838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Arbutus unedo, commonly named 'strawberry tree' (ST), is a Mediterranean native plant that represents a relevant source of biologically active fractions and compounds. ST fruits, traditionally used with culinary and medicinal purposes, along with other components (leaves, roots, honeys, etc.), have been subjected to varied extraction procedures to obtain enriched and bioactive products. This work reviewed the scientific literature, searching for studies that evaluated the potential health implications of ST fractions and attending to the tested biological activities (antioxidant, antiproliferative, hypoglycemic, immune-modulatory, antihypertensive, antimicrobial, etc.), the part of the tree, the experimental model, the specific bioactive compounds and the selected extraction protocol. Furthermore, the strengths and weaknesses of the current state of the published evidence were critically analysed. Although in vitro results demonstrated the potential of ST fractions, further research is encouraged in order to obtain in vivo evidence (animal and clinical studies), assess additional activities (hypocholesterolemic, microbiome-modulatory), maximize the use of advanced extraction technologies, purify and isolate specific bioactive compounds and broaden the analysis investigating phenolic and non-phenolic molecules and their bioavailability.
Collapse
Affiliation(s)
- Diego Morales
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
6
|
Das N, Ray N, Patil AR, Saini SS, Waghmode B, Ghosh C, Patil SB, Patil SB, Mote CS, Saini S, Saraswat BL, Sircar D, Roy P. Inhibitory effect of selected Indian honey on colon cancer cell growth by inducing apoptosis and targeting the β-catenin/Wnt pathway. Food Funct 2022; 13:8283-8303. [PMID: 35834215 DOI: 10.1039/d1fo03727g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colon cancer is the most prevalent cause of death from cancer across the globe. Although chemotherapy drugs are predominantly used, their toxicity always remains a cause of concern. As an alternative to synthetic drugs, natural compounds or nutraceuticals are comparatively less toxic. Honey is widely used across different cultures as an alternative form of medicine. It represents a prominent source of plant-phenolic compounds and there is demonstrable evidence of its anti-oxidant and anti-microbial activities. The aim of the present work was to investigate the anti-proliferative effect of some Indian honeys and analyze their mechanism of action in colon cancer. In order to establish the composition-activity relationship, we evaluated the bioactive components present in selected honey samples by GC-MS and HPLC analysis. Indian honey samples showed a significant inhibitory impact on cell growth by restricting cell proliferation, causing apoptosis, and restricting the cell cycle in the G2/M phase specifically for colon cancer cells. The apoptotic activities, as imparted by the honey samples, were established by Annexin V/PI staining, real-time PCR, and immunoblot analyses. The treated cells showed increased expressions of p53 and caspases 3, 8, and 9, thus indicating the involvement of both extrinsic and intrinsic apoptotic pathways. The honey samples were also found to inhibit the β-catenin/Wnt pathway. In the next phase of the study, the efficacy of these honey samples was evaluated in colon carcinoma induced SD-rats. Overall, these findings demonstrated that selected Indian honeys could be established as effective nutraceuticals for the prevention as well as cure of colon cancer.
Collapse
Affiliation(s)
- Neeladrisingha Das
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India.
| | - Neelanjana Ray
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India.
| | - Abhinandan R Patil
- Centre for Interdisciplinary Research, D. Y. Patil University, Kolhapur - 416 006, Maharashtra, India
| | - Shashank Sagar Saini
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India
| | - Bhairavnath Waghmode
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India
| | - Chandrachur Ghosh
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India.
| | - Sunita B Patil
- Department of Pathology, D. Y. Patil Medical College, Kolhapur - 416 006, Maharashtra, India
| | - Sandeep B Patil
- Biocyte Institute of Research and Development, Sangli - 416 416, Maharashtra, India
| | - Chandrasekhar S Mote
- Department of Veterinary Pathology, KNP College of Veterinary Science, Sirwal - 412 801, Maharashtra, India
| | - Surendra Saini
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India.
| | - B L Saraswat
- Department of Agriculture, Cooperation & Farmers Welfare (DAC & FW), Ministry of Agriculture and Farmers Welfare, Govt. of India, 150 A, Krishi Bhawan, New Delhi - 110001, India
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee - 247 667, Uttarakhand, India.
| |
Collapse
|
7
|
Cytotoxic activity of strawberry tree ( Arbutus unedo L.) honey, its extract, and homogentisic acid on CAL 27, HepG2, and Caco-2 cell lines. ARHIV ZA HIGIJENU RADA I TOKSIKOLOGIJU 2022; 73:158-168. [PMID: 35792769 PMCID: PMC9287835 DOI: 10.2478/aiht-2022-73-3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
Abstract
Strawberry tree (Arbutus unedo L.) honey (STH), also known as “bitter honey”, is a traditional medicine widely used in the Mediterranean area. Regardless of geographical origin, it usually has a very high content of phenolic compounds and strong antioxidant capacity. Yet, little is still known about the effects of STH, its phenolic extract (STHE), and its main bioactive compound – homogentisic acid (HGA) – at the cell level. The aim of this study was to estimate total phenolic content, DPPH radical scavenging activity, and ferric reducing antioxidant power of STH made in Croatia and investigate cytotoxic and pro-oxidative effects of STH, STHE and HGA on three human cell lines: tongue squamous cell carcinoma (CAL 27), hepatocellular carcinoma (HepG2), and epithelial colorectal adenocarcinoma cells (Caco-2) cells. These substances were tested at four concentrations (0.5–5× average human daily intake of STH) and over 30 min and 1 and 2 h. Croatian STH had a total phenolic content of 1.67 g gallic acid equivalents (GAE) per kg of honey, DPPH radical scavenging activity of 2.96 mmol Trolox equivalents (TE) per kg of honey, and ferric reducing antioxidant power (FRAP) of 13.5 mmol Fe2+ per kg of honey. Our results show no clear and consistent time- or concentration-dependent cytotoxicity in any of the cell lines. ROS levels in all the three cell types at almost all exposure times were not significantly higher than control. The most important observation is that the tested substances have low cytotoxicity and high biocompatibility, regardless of concentration, which is a good starting point for further research of their biological effects in other models.
Collapse
|
8
|
Rivas-García L, Romero-Márquez JM, Navarro-Hortal MD, Esteban-Muñoz A, Giampieri F, Sumalla-Cano S, Battino M, Quiles JL, Llopis J, Sánchez-González C. Unravelling potential biomedical applications of the edible flower Tulbaghia violacea. Food Chem 2022; 381:132096. [PMID: 35094882 DOI: 10.1016/j.foodchem.2022.132096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/24/2023]
Abstract
Traditionally, edible flowers have been used as foods and for therapeutic purposes, today they have gained importance due to their bioactive compounds such as flavonols, anthocyanins or other phenolic compounds, which give them potential for biomedical applications. This work evaluated a methanolic extract of Tulbaghia violacea. Eleven individual phenolic compounds were found and quantified by mass spectrometry in the extract. Antioxidant activity tests (TEAC, FRAP and DPPH) and other characterization parameters were assayed (total phenolic content and total flavonoid content). In vitro studies showed antitumoral activity against ovarian tumoral cells mediated by the induction of non-dependent caspase cell death and by the activation of reactive oxygen species. The effect of the extract against features of Alzheimer disease was in vivo assayed in Caenorhabditis elegans. Tulbaghia extract led to a reduction in the 1-42 beta amyloid peptide formation and prevented oxidative stress. These results suggested that Tulbaghia violacea could be a new source of phenolic compounds for nutraceuticals and functional food development.
Collapse
Affiliation(s)
- Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32. 18016 Armilla, Granada, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Jose M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | - M D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain
| | | | - Francesca Giampieri
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sandra Sumalla-Cano
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32. 18016 Armilla, Granada, Spain
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; Sport and Health Research Centre, University of Granada, C/. Menéndez Pelayo 32. 18016 Armilla, Granada, Spain.
| |
Collapse
|
9
|
Giampieri F, Quiles JL, Cianciosi D, Forbes-Hernández TY, Orantes-Bermejo FJ, Alvarez-Suarez JM, Battino M. Bee Products: An Emblematic Example of Underutilized Sources of Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6833-6848. [PMID: 34974697 PMCID: PMC9204823 DOI: 10.1021/acs.jafc.1c05822] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Beside honey, honeybees (Apis mellifera L.) are able to produce many byproducts, including bee pollen, propolis, bee bread, royal jelly, and beeswax. Even if the medicinal properties of these byproducts have been recognized for thousands of years by the ancient civilizations, in the modern era, they have a limited use, essentially as nutritional supplements or health products. However, these natural products are excellent sources of bioactive compounds, macro- and micronutrients, that, in a synergistic way, confer multiple biological activities to these byproducts, such as, for example, antimicrobial, antioxidant, and anti-inflammatory properties. This work aims to update the chemical and phytochemical composition of bee pollen, propolis, bee bread, royal jelly, and beeswax and to summarize the main effects exerted by these byproducts on human health, from the anticancer and immune-modulatory activities to the antidiabetic, hypolipidemic, hypotensive, and anti-allergic properties.
Collapse
Affiliation(s)
- Francesca Giampieri
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
- Research
Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Jose Luis Quiles
- Research
Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department
of Physiology, Institute of Nutrition and Food Technology ‘‘José
Mataix”, Biomedical Research Centre, University of Granada, 1800 Granada, Spain
| | - Danila Cianciosi
- Department
of Clinical Sciences, Polytechnic University
of Marche, 60131 Ancona, Italy
| | | | | | - José Miguel Alvarez-Suarez
- Departamento
de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito, Quito 170157, Ecuador
- King
Fahd Medical Research Center, King Abdulaziz
University, Jeddah 21589, Saudi Arabia
- Instituto
de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito 170157, Ecuador
- E-mail:
| | - Maurizio Battino
- Research
Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
- Department
of Clinical Sciences, Polytechnic University
of Marche, 60131 Ancona, Italy
- International
Joint Research Laboratory of Intelligent Agriculture and Agri-products
Processing, Jiangsu University, Zhenjiang, Jiangsu 212013, People’s Republic
of China
- E-mail:
| |
Collapse
|
10
|
Lawag IL, Lim LY, Joshi R, Hammer KA, Locher C. A Comprehensive Survey of Phenolic Constituents Reported in Monofloral Honeys around the Globe. Foods 2022; 11:foods11081152. [PMID: 35454742 PMCID: PMC9025093 DOI: 10.3390/foods11081152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/11/2023] Open
Abstract
The aim of this review is to provide a comprehensive overview of the large variety of phenolic compounds that have to date been identified in a wide range of monofloral honeys found globally. The collated information is structured along several themes, including the botanical family and genus of the monofloral honeys for which phenolic constituents have been reported, the chemical classes the phenolic compounds can be attributed to, and the analytical method employed in compound determination as well as countries with a particular research focus on phenolic honey constituents. This review covers 130 research papers that detail the phenolic constituents of a total of 556 monofloral honeys. Based on the findings of this review, it can be concluded that most of these honeys belong to the Myrtaceae and Fabaceae families and that Robinia (Robinia pseudoacacia, Fabaceae), Manuka (Leptospermum scoparium, Myrtaceae), and Chestnut (Castanea sp., Fagaceae) honeys are to date the most studied honeys for phenolic compound determination. China, Italy, and Turkey are the major honey phenolic research hubs. To date, 161 individual phenolic compounds belonging to five major compound groups have been reported, with caffeic acid, gallic acid, ferulic acid and quercetin being the most widely reported among them. HPLC with photodiode array detection appears to be the most popular method for chemical structure identification.
Collapse
Affiliation(s)
- Ivan Lozada Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
| | - Lee-Yong Lim
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
| | - Ranee Joshi
- Centre for Exploration Targeting, School of Earth Sciences, University of Western Australia, Crawley, WA 6009, Australia;
| | - Katherine A. Hammer
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), University of Western Australia, Crawley, WA 6009, Australia; (I.L.L.); (K.A.H.)
- Division of Pharmacy, School of Allied Health, University of Western Australia, Crawley, WA 6009, Australia;
- Correspondence:
| |
Collapse
|
11
|
Bose D, Chaudhary A, Padmavati M, Chatterjee J, Banerjee R. In vitro evaluation of anti-proliferative activity of protein from Litchi chinensis honey against human cervical cancer cell line (HeLa). J Herb Med 2022. [DOI: 10.1016/j.hermed.2021.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Liu ZB, Zhang T, Ye X, Liu ZQ, Sun X, Zhang LL, Wu CJ. Natural substances derived from herbs or plants are promising sources of anticancer agents against colorectal cancer via triggering apoptosis. J Pharm Pharmacol 2021; 74:162-178. [PMID: 34559879 DOI: 10.1093/jpp/rgab130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Nowadays, one of the most common gastrointestinal cancers is colorectal cancer (CRC). Chemotherapy is still one of the main methods to treat cancer. However, the currently available synthetic chemotherapy drugs often cause serious adverse reactions. Apoptosis is generally considered as an ideal way for induction the death of tumour cells without the body's inflammatory response, and it is reported that lots of natural agents could trigger various cancer cells to apoptosis. The overarching aim of this project was to elucidate the specific mechanisms by which natural substances induce apoptosis in CRC cells and to be used as an alternative therapeutic option in the future. KEY FINDINGS The mechanisms for the pro-apoptotic effects of natural substances derived from herbs or plants include death receptor pathway, mitochondrial pathway, endoplasmic reticulum stress pathway, related signal transduction pathways (PI3K/Akt, MAPK, p53 signalling), and so on. SUMMARY This paper updated this information regarding the anti-tumour effects of natural agents via induction of apoptosis against CRC, which would be beneficial for future new drug research regarding natural products from herbs or plants.
Collapse
Affiliation(s)
- Zi-Bo Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Ting Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xun Ye
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Zi-Qi Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Xue Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Li-Lin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | | |
Collapse
|
13
|
Amessis-Ouchemoukh N, Maouche N, Otmani A, Terrab A, Madani K, Ouchemoukh S. Evaluation of Algerian’s honey in terms of quality and authenticity based on the melissopalynology and physicochemical analysis and their antioxidant powers. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-210561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND: Honey is a vegetable and animal product which comes from nectar and/or honeydew. It is used in different nutritional and therapeutic fields. OBJECTIVE: Melissopalynology and physicochemical analysis of Algerian honeys, determination of their phenolic compounds and authenticity parameters and the evaluation of their antioxidant properties. METHODS: Twenty Algerians honey were studied for their physicochemical parameters (moisture, pH, proteins, proline, hydroxymethylfurfural, ash, color, electrical conductivity, and optical rotation), floral origin and phenolic compounds contents. Antioxidant activities were tested too. RESULTS: Melissopalynologycal analyses revealed that the studied honeys were twelve multifloral, seven Fabaceae, and one Myrtaceae. All honeys were acidic (3.65≤pH≤4.35) and most of them were low in moisture content. The electrical conductivity varied between 0.29 mS/cm and 1.78 mS/cm. Ash, protein and proline contents results showed that the majority of honeys were in agreement with the legislation and were authentic. The color varied from mimosa yellow to dark brown. The specific rotation was levorotatory in most honey samples and the hydroxymethylfurfural values (from 1.5 mg/kg to 34.73 mg/kg) agreed with the international requirements. Honeys were rich in total phenolic compounds, 22.41 (Honey11) to 96.16 (Honey15) mg gallic acid equivalents/100 g, and flavonoids, 8.90 (Honey11) to 80.02 (Honey02) mg quercetin equivalents/100 g. Honey samples 15, 03, 05, 01, and 06 exerted more than 50% reduction of 1,1-diphenyl-2-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radicals and were able to reduce iron while honey samples 12, 18, 19, 14, and 11 chelate efficiently iron. High significant correlations between physicochemical parameters and antioxidant activities were found. CONCLUSION: The Algerian honeys analyzed were authentic and variations in their quality parameters and phenolics composition were directly associated with their demonstrated antioxidant properties.
Collapse
Affiliation(s)
- Nadia Amessis-Ouchemoukh
- Laboratoire de Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Nacera Maouche
- Laboratoire de Biochimie appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Amar Otmani
- Laboratoire de Biochimie appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Anass Terrab
- Departamento de Biologia Vegetal y Ecologia, Universidad de Sevilla, Apdo, Sevilla, Spain
| | - Khodir Madani
- Laboratoire de Biomathématique, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
- Centre de Recherche en Technologie des Industries Agro-alimentaires, Bejaia, Algeria
| | - Salim Ouchemoukh
- Laboratoire de Biochimie appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| |
Collapse
|
14
|
Strawberry tree honey in combination with 5-fluorouracil enhances chemosensitivity in human colon adenocarcinoma cells. Food Chem Toxicol 2021; 156:112484. [PMID: 34389368 DOI: 10.1016/j.fct.2021.112484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 12/20/2022]
Abstract
Colorectal cancer remains a challenging health burden worldwide. This study aimed to assess the potentiality of Strawberry tree honey (STH), a polyphenol-enriched food, to increase the effectiveness of 5-Fluorouracil (5-FU) in adenocarcinoma (HCT-116) and metastatic (LoVo) colon cancer cell lines. The combined treatment reduced cell viability and caused oxidative stress, by increasing oxidative biomarkers and decreasing antioxidant defence, in a more potent way compared to 5-FU alone. The expression of endoplasmic reticulum (ATF-6, XBP-1) and MAPK (p-p38 MAPK, p-ERK1/2) markers were also elevated after the combined treatment, enhancing the cell cycle arrest through the modulation of regulatory genes (i.e., cyclins and CDKs). Apoptotic gene (i.e., caspases) expressions were also increased after the combined treatment, while those of proliferation (i.e., EGFR), cell migration, invasion (i.e., matrix metallopeptidase) and epithelial-mesenchymal transition (N-cadherin, β-catenin) were suppressed. Finally, the combined treatment led cell metabolism towards a quiescent stage, by reducing mitochondrial respiration and glycolysis. In conclusion, this work represents an initial step to highlight the possibility to use STH in combination with 5-FU in the treatment of colon cancer, even if further in vitro an in vivo studies are strongly needed to confirm the possible chemo-sensitizing effects of STH.
Collapse
|
15
|
The Rediscovery of Honey for Skin Repair: Recent Advances in Mechanisms for Honey-Mediated Wound Healing and Scaffolded Application Techniques. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Honey is a honey-bee product obtained mainly by the enzymatic processing of nectar from a variety of plants, which leads to the wide range of colours and flavours available on the market. These organoleptic and nutritional features are influenced by the chemical composition, which in turn depends on the botanical origin. Bioactive compounds account for honey beneficial activity in medical applications, which explains the extensive use of honey in ethno-pharmacology since antiquity, from cough remedies to dermatological treatments. Wound healing is one of the main therapeutic uses of honey, and various design options in pharmaceutical technology such as smart delivery systems and advanced dressings are currently being developed to potentiate honey’s valuable properties for better performance and improved final outcome. In this review, we will focus on the latest research that discloses crucial factors in determining what properties are most beneficial when considering honey as a medicinal product. We will present the most recent updates on the possible mechanisms responsible for the exceptional effects of this ageless therapeutical remedy on skin repair. Furthermore, the state-of-the-art in application techniques (incorporation into scaffolds as an alternative to direct administration) used to enhance honey-mediated wound-healing properties are explored.
Collapse
|
16
|
Viteri R, Zacconi F, Montenegro G, Giordano A. Bioactive compounds in Apis mellifera monofloral honeys. J Food Sci 2021; 86:1552-1582. [PMID: 33864260 DOI: 10.1111/1750-3841.15706] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 01/23/2023]
Abstract
Honey is a natural product with a sweet flavor. Honey is made by the honeybee (Apis mellifera L.) from the nectar of flowers or other plant secretions that are collected near the hive. These products are mixed with bee saliva and stored. Several studies have demonstrated that honey exhibits antioxidant, antimicrobial, nematicidal, antifungal, anticancer, and anti-inflammatory activities. These properties are influenced by the plants from which the secretions are harvested, from the naturally occurring compounds present in the nectar. Studies of the properties and applications of honey have distinguished honey from other natural products due to the presence of certain compounds and due its bioactive properties. The focus of this review is to discuss the identified and isolated compounds from monofloral honey produced by A. mellifera, with specific emphasis on antioxidant and antimicrobial properties of honey and its therapeutic health benefits.
Collapse
Affiliation(s)
- Rafael Viteri
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| | - Flavia Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile.,Instituto de Ingeniería Biológica y Médica, Escuelas de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| | - Gloria Montenegro
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| | - Ady Giordano
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Santiago, Chile
| |
Collapse
|
17
|
Masad RJ, Haneefa SM, Mohamed YA, Al-Sbiei A, Bashir G, Fernandez-Cabezudo MJ, al-Ramadi BK. The Immunomodulatory Effects of Honey and Associated Flavonoids in Cancer. Nutrients 2021; 13:1269. [PMID: 33924384 PMCID: PMC8069364 DOI: 10.3390/nu13041269] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Honey has exerted a high impact in the field of alternative medicine over many centuries. In addition to its wound healing, anti-microbial and antioxidant properties, several lines of evidence have highlighted the efficiency of honey and associated bioactive constituents as anti-tumor agents against a range of cancer types. Mechanistically, honey was shown to inhibit cancer cell growth through its pro-apoptotic, anti-proliferative and anti-metastatic effects. However, the potential of honey to regulate anti-tumor immune responses is relatively unexplored. A small number of in vitro and in vivo studies have demonstrated the ability of honey to modulate the immune system by inducing immunostimulatory as well as anti-inflammatory effects. In the present review, we summarize the findings from different studies that aimed to investigate the immunomodulatory properties of honey and its flavonoid components in relation to cancer. While these studies provide promising data, additional research is needed to further elucidate the immunomodulatory properties of honey, and to enable its utilization as an adjuvant therapy in cancer.
Collapse
Affiliation(s)
- Razan J. Masad
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Shoja M. Haneefa
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Yassir A. Mohamed
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Ashraf Al-Sbiei
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (A.A.-S.); (M.J.F.-C.)
| | - Ghada Bashir
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (A.A.-S.); (M.J.F.-C.)
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; (R.J.M.); (S.M.H.); (Y.A.M.); (G.B.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Floris I, Pusceddu M, Satta A. The Sardinian Bitter Honey: From Ancient Healing Use to Recent Findings. Antioxidants (Basel) 2021; 10:antiox10040506. [PMID: 33805084 PMCID: PMC8064093 DOI: 10.3390/antiox10040506] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 01/22/2023] Open
Abstract
Sardinian bitter honey, obtained from the autumnal flowering of the strawberry tree (Arbutus unedo L.), has an old fame and tradition in popular use, especially as a medicine. Its knowledge dates back over 2000 years, starting from the Greeks and Romans to the present day. There are many literary references from illustrious personalities of the past such as Cicero, Horace, Virgil, and Dioscorides, until recent times, associated with the peculiar anomaly of its taste, which lends itself to literary and poetic metaphors. The curiosity of its bitter taste is also what led to the first studies starting in the late 1800s, aimed to reveal its origin. Other studies on its botanical source and characteristics have been carried out over time, up to the most recent investigations, which have confirmed its potential for use in the medical field, thanks to its antioxidant, antiradical, and cancer-preventing properties. These benefits have been associated with its phenolic component and in particular with the prevailing phenolic acid (homogentisic acid). Later, other strawberry tree honeys from the Mediterranean area have also shown the same properties. However, Sardinian bitter honey maintains its geographical and historical identity, which is recognized by other Mediterranean cultures.
Collapse
|
19
|
de la Luz Cádiz-Gurrea M, Sinan KI, Zengin G, Bene K, Etienne OK, Leyva-Jiménez FJ, Fernández-Ochoa Á, del Carmen Villegas-Aguilar M, Mahomoodally MF, Lobine D, Ferrante C, Segura-Carretero A. Bioactivity assays, chemical characterization, ADMET predictions and network analysis of Khaya senegalensis A. Juss (Meliaceae) extracts. Food Res Int 2021; 139:109970. [DOI: 10.1016/j.foodres.2020.109970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022]
|
20
|
Zhang S, Hu C, Guo Y, Wang X, Meng Y. Polyphenols in fermented apple juice: Beneficial effects on human health. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104294] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
21
|
Sharma R, Martins N, Chaudhary A, Garg N, Sharma V, Kuca K, Nepovimova E, Tuli HS, Bishayee A, Chaudhary A, Prajapati PK. Adjunct use of honey in diabetes mellitus: A consensus or conundrum? Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Talebi M, Talebi M, Farkhondeh T, Samarghandian S. Molecular mechanism-based therapeutic properties of honey. Biomed Pharmacother 2020; 130:110590. [DOI: 10.1016/j.biopha.2020.110590] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
|
23
|
Keshavarzi M, Najafi G, Ahmadi Gavlighi H, Seyfi P, Ghomi H. Enhancement of polyphenolic content extraction rate with maximal antioxidant activity from green tea leaves by cold plasma. J Food Sci 2020; 85:3415-3422. [PMID: 32984963 DOI: 10.1111/1750-3841.15448] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023]
Abstract
A dielectric barrier discharge (DBD) atmospheric cold plasma was evaluated as a tool to increase the extraction rate of total phenolic content (TPC) and antioxidant activity from green tea leaves. The effects of nitrogen DBD cold plasma on changes of color and surface morphology were investigated. Optimum conditions of cold plasma treatment (treatment time and generation power) were obtained by response surface methodology. After the nitrogen DBD cold plasma at 15 W of the generation power for 15 min, the TPC and antioxidant activity of green tea increased by 41.14% and 41.06%, respectively. The catechin also increased by 103.12%. The scanning electron microscopy results showed cell ablation and ruptures of the green tea leaf surface after nitrogen DBD cold plasma treatment. PRACTICAL APPLICATION: The developed DBD cold plasma source fed by nitrogen gas can be a suitable procedure for green and useful extraction of phenolic compounds from natural sources in the food industries.
Collapse
Affiliation(s)
- Maryam Keshavarzi
- Department of Mechanical and Biosystems Engineering, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Gholamhassan Najafi
- Department of Mechanical and Biosystems Engineering, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Pourya Seyfi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hamid Ghomi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
24
|
Diep TT, Rush EC, Yoo MJY. Tamarillo (Solanum betaceum Cav.): A Review of Physicochemical and Bioactive Properties and Potential Applications. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1804931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tung Thanh Diep
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Auckland, New Zealand
- The Riddet Institute, Centre of Research Excellence, Palmerston North, New Zealand
| | - Elaine C. Rush
- The Riddet Institute, Centre of Research Excellence, Palmerston North, New Zealand
- School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Michelle Ji Yeon Yoo
- School of Science, Faculty of Health and Environment Sciences, Auckland University of Technology, Auckland, New Zealand
- The Riddet Institute, Centre of Research Excellence, Palmerston North, New Zealand
| |
Collapse
|
25
|
Frión-Herrera Y, Gabbia D, Scaffidi M, Zagni L, Cuesta-Rubio O, De Martin S, Carrara M. Cuban Brown Propolis Interferes in the Crosstalk between Colorectal Cancer Cells and M2 Macrophages. Nutrients 2020; 12:nu12072040. [PMID: 32660099 PMCID: PMC7400951 DOI: 10.3390/nu12072040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor-associated macrophages (TAMs), primarily the M2 phenotype, are involved in the progression and metastasis of colorectal cancer (CRC). Cuban brown propolis (Cp) and its main component Nemorosone (Nem) displays an antiproliferative effect on different cancer cells, including CRC cell lines. However, whether Cp and Nem could exploit its effect on CRC cells by targeting their relationship with TAMs remains to be elucidated. In this study, we differentiated the human monocytic THP-1 cells to M2 macrophages and confirmed this transition by immunofluorescence (IF) staining, qRT-PCR and zymography. An MTT assay was performed to determine the effect of Cp and Nem on the viability of CRC HT-29 cells co-cultured with M2 macrophages. Furthermore, the migration and invasion abilities of HT-29 cells were determined by Transwell assays and the expression levels of epithelial–mesenchymal transition (EMT) markers were analyzed by IF staining. We demonstrated that Cp and Nem reduced the viability of M2 macrophages and, accordingly, the activity of the MMP-9 metalloprotein. Moreover, we demonstrated that M2 macrophages produce soluble factors that positively regulate HT-29 cell growth, migration and invasion. These M2-mediated effects were counteracted by Cp and Nem treatments, which also played a role in regulating the expression of the EMT markers E-cadherin and vimentin. Taken together, our results indicate that Nem contained in Cp interferes in the crosstalk between CRC cells and TAMs, by targeting M2 macrophages.
Collapse
Affiliation(s)
- Yahima Frión-Herrera
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy; (Y.F.-H.); (D.G.); (M.S.); (L.Z.); (M.C.)
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy; (Y.F.-H.); (D.G.); (M.S.); (L.Z.); (M.C.)
| | - Michela Scaffidi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy; (Y.F.-H.); (D.G.); (M.S.); (L.Z.); (M.C.)
| | - Letizia Zagni
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy; (Y.F.-H.); (D.G.); (M.S.); (L.Z.); (M.C.)
| | - Osmany Cuesta-Rubio
- Chemistry and Health Faculty, Technical University of Machala, Ave. Panamericana Vía a Pasaje Km. 5 1/2, Machala 070101, Ecuador;
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy; (Y.F.-H.); (D.G.); (M.S.); (L.Z.); (M.C.)
- Correspondence: ; Tel.: +39-0498275077
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy; (Y.F.-H.); (D.G.); (M.S.); (L.Z.); (M.C.)
| |
Collapse
|
26
|
Pirzadeh M, Caporaso N, Rauf A, Shariati MA, Yessimbekov Z, Khan MU, Imran M, Mubarak MS. Pomegranate as a source of bioactive constituents: a review on their characterization, properties and applications. Crit Rev Food Sci Nutr 2020; 61:982-999. [PMID: 32314615 DOI: 10.1080/10408398.2020.1749825] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing awareness about the use of compounds obtained from natural sources exerting health-beneficial properties, including antimicrobial and antioxidant effects, led to increased number of research papers focusing on the study of functional properties of target compounds to be used as functional foods or in preventive medicine. Pomegranate has shown positive health properties due to the presence of bioactive constituents such as polyphenols, tannins, and anthocyanins. Punicalagin is the major antioxidant, abundantly found in pomegranate's peel. Research has shown that pomegranate polyphenols not only have a strong antioxidant capacity but they also inhibit the growth of pathogenic bacteria like V. cholera, P. aeruginosa and S. aureus, B. cereus, E. coli, and S. virulence factor, and inhibits fungi such as A. Ochraceus, and P. citrinum. Compounds of natural origin inhibit the growth of various pathogens by extending the shelf life of foodstuffs and assuring their safety. Therefore, the need to find compounds to be used in combination with antibiotics or as new antimicrobial sources, such as plant extracts. On the basis of the above discussion, this review focuses on the health benefits of pomegranate, by summarizing the current body of research focusing on pomegranate bioactive constituents and their therapeutic potential against some pathogenic microbes.
Collapse
Affiliation(s)
- Maryam Pirzadeh
- Department of Food Science and Technology, Faculty of Agriculture, Sarvestan Branch, Islamic Azad University, Sarvestan, Iran
| | - Nicola Caporaso
- Department of Food Science, School of Biosciences, University of Nottingham, Leicestershire, UK.,Department of Agricultural Sciences, University of Naples "Federico II", Portici, NA, Italy
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State, University Named After I.S. Turgenev, Orel, Russia.,Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation.,Kazakh Research Institute of Processing and Food Industry (Semey Branch), Semey, Kazakhstan
| | - Zhanibek Yessimbekov
- Food Engineering Department, Shakarim State University of Semey, Semey, Kazakhstan
| | - Muhammad Usman Khan
- Bioproducts Sciences and Engineering Laboratory (BSEL), Washington State University, Richland, WA, USA.,Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | | |
Collapse
|
27
|
Mao H, Wang H, Hu X, Zhang P, Xiao Z, Liu J. One-Pot Efficient Catalytic Oxidation for Bio-Vanillin Preparation and Carbon Isotope Analysis. ACS OMEGA 2020; 5:8794-8803. [PMID: 32337441 PMCID: PMC7178775 DOI: 10.1021/acsomega.0c00370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Vanillin (4-hydroxy-3-methoxybenzaldehyde) is one of the most widely used food spices. Aimed at bio-vanillin green production, the natural materials were directly catalytically oxidized efficiently in one pot under low O2 pressure (0.035 MPa) in the presence of a non-noble metal oxidation combined catalyst (NiCo2O4/SiO2 nanoparticles), which showed remarkable advantages of a short synthetic route and less industrial waste. The catalytic system showed good universality to many natural substrates with nearly 100% conversion and 86.3% bio-vanillin yield. More importantly, carbon isotope ratio investigations were employed to verify the origin of the organic matter. One hundred percent 14C content of the obtained vanillin was detected, which indicated that it was an efficient method to distinguish the vanillin from biomass or fossil materials. Furthermore, the 13C isotope examination showed effective distinguishing ability for the vanillin from a particular biomass source. The C isotope detection provides an effective method for commercial vanillin identification.
Collapse
Affiliation(s)
- Haifang Mao
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Hongzhao Wang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaojun Hu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Pingyi Zhang
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Zuobing Xiao
- School
of Perfume and Aroma Technology, Shanghai
Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| | - Jibo Liu
- School
of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China
| |
Collapse
|
28
|
Abstract
Cancer, still in the limelight due to its dreadful nature, shows overexpression of multiple signaling macromolecules leading to failure of many chemotherapeutic agents and acquired resistance to chemotherapy. These factors highlight the significance of shifting toward targeted therapy in cancer research. Recently, ERKs (ERK1 and 2) have been established as a promising target for the management of various types of solid tumors, due to their aberrant involvement in cell growth and progression. Several ERKs inhibitors have reached clinical trials for the management of cancer and their derivatives are being continuously reported with noteworthy anticancer effect. This review highlights the recent reports on various chemical classes involved in the development of ERKs inhibitors along with their in vitro and in vivo activity and structure-activity relationship profile.
Collapse
|
29
|
Jędrusek-Golińska A, Górecka D, Buchowski M, Wieczorowska-Tobis K, Gramza-Michałowska A, Szymandera-Buszka K. Recent progress in the use of functional foods for older adults: A narrative review. Compr Rev Food Sci Food Saf 2020; 19:835-856. [PMID: 33325174 DOI: 10.1111/1541-4337.12530] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
The number and proportion of older adults are increasing globally, and it is predicted that in 2020, there will be 723 million people worldwide aged 66 and older. In recent decades, numerous studies showed that healthy eating is positively associated with better nutritional status and quality of life, and the decreased incidence of noncommunicable diseases. As older adults become health conscious, the demand for foods and beverages rich in nutrients and bioactive compounds has increased. The increased demand for healthy food stimulated a recent rapid increase in designing, producing, and marketing functional foods to prevent or correct nutrient deficiencies and to improve the nutritional status of older adults. These functional products contain and/or are enriched with dietary fiber; omega-3 polyunsaturated fatty acids; phytoestrogens; polyphenols; carotenoids such as alpha- and beta-carotene; lutein and zeaxanthin; pre-, pro-, and synbiotics; and plant sterols and stanols. A limited number of publications have thoroughly addressed the effect of functional foods on the nutritional status of older adults. The goal of this review was to review existing recent research on the role of functional foods in healthy and active aging.
Collapse
Affiliation(s)
- Anna Jędrusek-Golińska
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Danuta Górecka
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Maciej Buchowski
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Katarzyna Wieczorowska-Tobis
- Institute of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poland and Laboratory for Geriatric Medicine, Department of Palliative Care, University of Medical Science, Poznań, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| | - Krystyna Szymandera-Buszka
- Department of Gastronomy Science and Functional Foods, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
30
|
Wang L, Zhou P, Feng R, Luo Z, Li X, Gao L. Anti-proliferation activities of Oryza sativa L. anthocyanins-Hohenbuehelia serotina polysaccharides complex after in vitro gastrointestinal digestion. Food Chem Toxicol 2019; 135:111012. [PMID: 31794802 DOI: 10.1016/j.fct.2019.111012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 01/26/2023]
Abstract
In order to improve the bioavailability of Oryza sativa L. anthocyanins, we fabricated Oryza sativa L. anthocyanins-Hohenbuehelia serotina polysaccharides (OSA-HSP) complex and investigated its anti-proliferation activities taking into account its changes along simulated gastrointestinal digestion in vitro. Results showed that OSA mainly composed by delphinidin, cyanidin, petunidin, malvidin and their derivatives was combined with HSP through electrostatic interaction. OSA-HSP complex belonged to non-crystalline substance, and had compact and laminar structural characteristics. Under simulated gastrointestinal digestion, OSA-HSP complex significantly prevented the degradation of anthocyanins, and presented sustain release effect. However, the anti-proliferation activities of OSA-HSP complex digested by different gastrointestinal process were remarkably changed, especially after small intestinal digestion. HeLa cells treated with OSA-HSP complex exhibited pro-apoptosis characteristics by triggering endogenous mitochondrial apoptosis pathway through activating the expressions of Bax, cytochrome c and Caspase-3 as well as inhibiting the expression of Bcl-2. These findings provided new insight to improve the bioavailability of anthocyanins in functional foods and tumor therapy.
Collapse
Affiliation(s)
- Lu Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Peng Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Ru Feng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Zhen Luo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Xiaoyu Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Lili Gao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| |
Collapse
|
31
|
Therapeutic and preventive properties of honey and its bioactive compounds in cancer: an evidence-based review. Nutr Res Rev 2019; 33:50-76. [PMID: 31791437 DOI: 10.1017/s0954422419000192] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the much improved therapeutic approaches for cancer treatment that have been developed over the past 50 years, cancer remains a major cause of mortality globally. Considerable epidemiological and experimental evidence has demonstrated an association between ingestion of food and nutrients with either an increased risk for cancer or its prevention. There is rising interest in exploring agents derived from natural products for chemoprevention or for therapeutic purposes. Honey is rich in nutritional and non-nutritional bioactive compounds, as well as in natural antioxidants, and its potential beneficial function in human health is becoming more evident. A large number of studies have addressed the anti-cancer effects of different types of honey and their phenolic compounds using in vitro and in vivo cancer models. The reported findings affirm that honey is an agent able to modulate oxidative stress and has anti-proliferative, pro-apoptotic, anti-inflammatory, immune-modulatory and anti-metastatic properties. However, despite its reported anti-cancer activities, very few clinical studies have been undertaken. In the present review, we summarise the findings from different experimental approaches, including in vitro cell cultures, preclinical animal models and clinical studies, and provide an overview of the bioactive profile and bioavailability of the most commonly studied honey types, with special emphasis on the chemopreventive and therapeutic properties of honey and its major phenolic compounds in cancer. The implications of these findings as well as the future prospects of utilising honey to fight cancer will be discussed.
Collapse
|
32
|
Manogaran P, Beeraka NM, Huang CY, Vijaya Padma V. Neferine and isoliensinine enhance ‘intracellular uptake of cisplatin’ and induce ‘ROS-mediated apoptosis’ in colorectal cancer cells – A comparative study. Food Chem Toxicol 2019; 132:110652. [DOI: 10.1016/j.fct.2019.110652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022]
|