1
|
Di Pietro P, Salviati E, Damato A, Prete V, Abate AC, Campiglia P, Vecchione C, Sommella E, Carrizzo A. α acid fraction from Hop extract exerts an endothelium-derived hyperpolarization vasorelaxant effect through TRPV4 employing the feedforward mechanism of PKCα. Food Funct 2024; 15:4180-4192. [PMID: 38506030 DOI: 10.1039/d4fo00058g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Until now, the beneficial vascular properties of Hop reported in the literature have been mainly attributed to specific compound classes, such as tannins and phenolic acids. However, the potential vascular action of a Hop subfraction containing a high amount of α or β acids remains completely understood. Therefore, this study aims to investigate the vascular effects of the entire Hop extract and to fraction the Hop extract to identify the main bioactive vascular compounds. A pressure myograph was used to perform vascular reactivity studies on mouse resistance arteries. Phytocomplex fractionation was performed on a semi-prep HPLC system and characterized by UHPLC-PDA-MS/MS coupled to mass spectrometry. Western blot analysis was performed to characterize the phosphorylation site enrolled. The entire Hop extract exerts a direct dose-dependent endothelial vascular action. The B1 subfraction, containing a high concentration of α acids, recapitulates the vascular effect of the crude extract. Its vasorelaxant action is mediated by the opening of Transient Receptor Potential Vanilloid type 4 (TRPV4), potentiated by PKCα, and subsequent involvement of endothelial small-conductance calcium-activated potassium channels (SKCa) and intermediate-conductance calcium-activated potassium channels (IKCa) that drives endothelium-dependent hyperpolarization (EDH) through heterocellular myoendothelial gap junctions (MEGJs). This is the first comprehensive investigation of the vascular function of Hop-derived α acids in resistance arteries. Overall, our data suggest that the B1 subfraction from Hop extracts, containing only α acids, has great potential to be translated into the useful armamentarium of natural bioactive compounds with cardiovascular benefits.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Baronissi, SA, 84081, Italy.
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Antonio Damato
- IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, IS, 86077, Italy
| | - Valeria Prete
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Baronissi, SA, 84081, Italy.
| | - Angela Carmelita Abate
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Baronissi, SA, 84081, Italy.
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Carmine Vecchione
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Baronissi, SA, 84081, Italy.
- IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, IS, 86077, Italy
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Albino Carrizzo
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Baronissi, SA, 84081, Italy.
- IRCCS Neuromed, Istituto Neurologico Mediterraneo, Pozzilli, IS, 86077, Italy
| |
Collapse
|
2
|
Xu C, Zhang X, Sun M, Liu H, Lv C. Interactions between humulinone derived from aged hops and protein Z enhance the foamability and foam stability. Food Chem 2024; 434:137449. [PMID: 37716140 DOI: 10.1016/j.foodchem.2023.137449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Foam is one of the important characteristics of beer, including foamability, foam stability and foam texture. Protein Z (PZ) is considered to be an important component of beer foam. In this study, the interaction between PZ and humulinone, a widespread compound in aged hops, and the effect on foam properties of PZ were investigated. The fluorescence spectra showed that the stoichiometric ratio of humulinone to PZ was 4.25 ± 0.48: 1, and the binding constant was (1.64 ± 0.17) × 105 M-1. MD and FTIR results showed that the main force of interaction between PZ and humulinone was hydrogen bond, and the possible sites were Asn-37, Ser-292, Lys-290 and Pro-395. Moreover, the addition of humulinone greatly reduced the surface tension of PZ solution, and changed the secondary structure of PZ, which is beneficial for the foam stability. Under the influence of humulinone, the foamability, foam stability and foam texture of PZ all increased.
Collapse
Affiliation(s)
- Chen Xu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xuanqi Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mingyang Sun
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hanhan Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Chenyan Lv
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Carbone K, Gervasi F. An Updated Review of the Genus Humulus: A Valuable Source of Bioactive Compounds for Health and Disease Prevention. PLANTS (BASEL, SWITZERLAND) 2022; 11:3434. [PMID: 36559547 PMCID: PMC9782902 DOI: 10.3390/plants11243434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/12/2023]
Abstract
The medicinal potential of hop (Humulus lupulus L.) is widely cited in ancient literature and is also allowed in several official pharmacopoeias for the treatment of a variety of ailments, mainly related to anxiety states. This is due to the plethora of phytoconstituents (e.g., bitter acids, polyphenols, prenyl flavonoids) present in the female inflorescences, commonly known as cones or strobili, endowed with anti-inflammatory, antioxidant, antimicrobial, and phytoestrogen activities. Hop has recently attracted the interest of the scientific community due to the presence of xanthohumol, whose strong anti-cancer activity against various types of cancer cells has been well documented, and for the presence of 8-prenyl naringenin, the most potent known phytoestrogen. Studies in the literature have also shown that hop compounds can hinder numerous signalling pathways, including ERK1/2 phosphorylation, regulation of AP-1 activity, PI3K-Akt, and nuclear factor NF-κB, which are the main targets of the antiproliferative action of bitter acids and prenylflavonoids. In light of these considerations, the aim of this review was to provide an up-to-date overview of the main biologically active compounds found in hops, as well as their in vitro and in vivo applications for human health and disease prevention. To this end, a quantitative literature analysis approach was used, using VOSviewer software to extract and process Scopus bibliometric data. In addition, data on the pharmacokinetics of bioactive hop compounds and clinical studies in the literature were analysed. To make the information more complete, studies on the beneficial properties of the other two species belonging to the genus Humulus, H. japonicus and H. yunnanensis, were also reviewed for the first time.
Collapse
Affiliation(s)
- Katya Carbone
- CREA—Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | | |
Collapse
|
4
|
Sommella E, Verna G, Liso M, Salviati E, Esposito T, Carbone D, Pecoraro C, Chieppa M, Campiglia P. Hop-derived fraction rich in beta acids and prenylflavonoids regulates the inflammatory response in dendritic cells differently from quercetin: unveiling metabolic changes by mass spectrometry-based metabolomics. Food Funct 2021; 12:12800-12811. [PMID: 34859812 DOI: 10.1039/d1fo02361f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) represent a heterogeneous family of immune cells that link innate and adaptive immunity and their activation is linked to metabolic changes that are essential to support their activity and function. Hence, targeting the metabolism of DCs represents an opportunity to modify the inflammatory and immune response. Among the natural matrices, Humulus lupulus (Hop) compounds have recently been shown to exhibit immunomodulatory and anti-inflammatory activity. This study aimed to evaluate the ability of specific Hop fractions to modulate DCs metabolism after stimulation with lipopolysaccharide (LPS) by an untargeted metabolomics approach and compare their effect with flavonol quercetin. Following liquid chromatography-based fractionation, three fractions (A, B, and C) were obtained and tested. Cytokine and gene expression were evaluated using ELISA and qPCR, respectively, while the untargeted metabolomics analysis was performed using a combined HILIC-HRMS and DI-FT-ICR approach. The HOP C fraction and quercetin could both reduce the production of several inflammatory cytokines such as IL-6, IL-1α, IL-1β, and TNF, but differently from quercetin, the HOP C mechanism is independent of extracellular iron-sequestration and showed significant upregulation of the Nrf2/Nqo1 pathway and Ap-1 compared to quercetin. The untargeted analysis revealed the modulation of several key pathways linked to pro-inflammatory and glycolytic phenotypes. In particular, HOP C treatment could modulate the oxidative step of the pentose phosphate pathway (PPP) and reduce the inflammatory mediator succinate, citrulline, and purine-pyrimidine metabolism, differently from quercetin. These results highlight the potential anti-inflammatory mechanism of specific Hop-derived compounds in restoring the dysregulated metabolism in DCs, which can be used in preventive or adjuvant therapies to suppress the undesirable inflammatory response.
Collapse
Affiliation(s)
- Eduardo Sommella
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.
| | - Giulio Verna
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy. .,PhD Program in Drug Discovery and Development, University of Salerno, Fisciano, SA, Italy
| | - Marina Liso
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, BA, Italy
| | | | - Tiziana Esposito
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, PA, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, PA, Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, BA, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.
| |
Collapse
|
5
|
Nobiletin and Xanthohumol Sensitize Colorectal Cancer Stem Cells to Standard Chemotherapy. Cancers (Basel) 2021; 13:cancers13163927. [PMID: 34439086 PMCID: PMC8392547 DOI: 10.3390/cancers13163927] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Colorectal cancer stem cells (CR-CSCs) play a pivotal role in the therapy resistance and relapse of CRC patients. Herein we demonstrate that new treatment approaches comprising polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively, hamper the viability of CR-CSCs as well as synergizing with 5-fluorouracil and oxaliplatin (FOX)-based chemotherapy. Extract fractions containing Nobiletin and Xanthohumol, in combination with chemotherapy, decreased stemness properties of CR-CSCs and restrained the outgrowth of chemoresistant metastatic CR-CSCs. These data pinpoint Nobiletin and Xanthohumol as efficacious anti-cancer compounds in metastatic settings. Abstract Colorectal cancer (CRC) mortality is mainly caused by patient refractoriness to common anti-cancer therapies and consequent metastasis formation. Besides, the notorious toxic side effects of chemotherapy are a concurrent obstacle to be tackled. Thus, new treatment approaches are needed to effectively improve patient outcomes. Compelling evidence demonstrated that cancer stem cells (CSCs) are responsible for treatment failure and relapse. New natural treatment approaches showed capabilities to selectively target the CSC subpopulation by rendering them targetable by standard cytotoxic compounds. Herein we show the anti-cancer properties of the polymethoxyflavones and prenylflavonoids extracted from Citrus sinensis and Humulus lupulus, respectively. The natural biofunctional fractions, singularly and in combination, reduced the cell viability of CRC stem cells (CR-CSCs) and synergized with 5-fluorouracil and oxaliplatin (FOX) chemotherapy. These phenomena were accompanied by a reduced S and G2/M phase of the cell cycle and upregulation of cell death-related genes. Notably, both phytoextracts in combination with FOX thwarted stemness features in CR-CSCs as demonstrated by the impaired clonogenic potential and decreased Wnt pathway activation. Extracts lowered the expression of CD44v6 and affected the expansion of metastatic CR-CSCs in patients refractory to chemotherapy. Together, this study highlights the importance of polymethoxyflavones and prenylflavonoids as natural remedies to aid oncological therapies.
Collapse
|
6
|
Characterization of phase I and phase II metabolites of hop (Humulus lupulus L.) bitter acids: In vitro and in vivo metabolic profiling by UHPLC-Q-Orbitrap. J Pharm Biomed Anal 2021; 201:114107. [PMID: 33984828 DOI: 10.1016/j.jpba.2021.114107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/21/2022]
Abstract
Bitter acids are a class of prenylated phloroglucinol derivatives present in Humulus lupulus L., known for their multiple healthy properties, nevertheless, research regarding their metabolism and stability is lacking. This study was aimed to elucidate the metabolic stability of hop α- and β-acids and characterize I and II phase metabolites in vitro and in vivo. For this purpose, an ultra high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) method was developed and validated. Mice liver microsomes were used to assess metabolic stability; in vitro t1/2 and clearance values were calculated, showing a moderate metabolism for α-acids (avgt1/2: 120.01 min, avgCLint 11.96 μL/min/mg), while β-acids were metabolized faster (avgt1/2: 103.01 min, avgCLint: 13.83 μL/min/mg). I and II phase metabolites were characterized both in in vitro, and in vivo, in mouse plasma and urine after oral administration. A combined full scan/data dependent/precursor ion list-triggered neutral loss (FS/dd-MS2/PIL-tNL) strategy was used to detect unknown and expected metabolites. As a result, 33 compounds were detected, including novel metabolites, such as 9 potential oxidized metabolites of humulones (M6-M14), and 10 glucuronide conjugates of α-acids, comprising 7 glucuronide derivatives of oxidized phase I metabolites (M26-M32). The proposed method extends the current knowledge regarding metabolization of hop α- and β-acids and could be applied for the comprehension of the metabolic fate of this class of compounds in different species, as well as for in vivo pharmacokinetic studies.
Collapse
|
7
|
Pepe G, Salviati E, Rapa SF, Ostacolo C, Cascioferro S, Manfra M, Autore G, Marzocco S, Campiglia P. Citrus sinensis and Vitis vinifera Protect Cardiomyocytes from Doxorubicin-Induced Oxidative Stress: Evaluation of Onconutraceutical Potential of Vegetable Smoothies. Antioxidants (Basel) 2020; 9:antiox9050378. [PMID: 32370308 PMCID: PMC7278676 DOI: 10.3390/antiox9050378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
The interest towards nutraceuticals able to counteract drug side effects is continuously growing in current chemotherapeutic protocols. In the present study, we demonstrated that smoothies containing mixtures of Citrus sinensis and Vitis vinifera L. cv. Aglianico N, two typical fruits of the Mediterranean diet, possess bioactive polyphenols that protect cardiomyocytes against doxorubicin-induced oxidative stress. The polyphenolic extracts isolated from Citrus sinensis- and Vitis vinifera-based functional smoothies were deeply characterized by Liquid Chromatography-Mass Spectrometry methods. Subsequently, the functional smoothies and relative mixtures were tested to verify their ability to affect cellular viability and oxidative stress parameters in embryonic cardiomyocyte cells (H9c2), and human breast adenocarcinoma cell line (MCF-7) exposed to doxorubicin. Interestingly, we found that the mix resulting from Citrus sinensis and Vitis vinifera association in ratio 1:1 was able to reduce cardiomyocytes damage induced by anthracyclines, without significantly interfering with the pro-apoptotic activity of the drug on breast cancer cells. These results point out the potential use of vegetable smoothies as adjuvants functional foods for chemotherapeutic anticancer protocols.
Collapse
Affiliation(s)
- Giacomo Pepe
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (E.S.); (S.F.R.); (G.A.)
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (E.S.); (S.F.R.); (G.A.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy
| | - Shara Francesca Rapa
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (E.S.); (S.F.R.); (G.A.)
| | - Carmine Ostacolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90123 Palermo, Italy;
| | - Michele Manfra
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| | - Giuseppina Autore
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (E.S.); (S.F.R.); (G.A.)
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (E.S.); (S.F.R.); (G.A.)
- Correspondence: (S.M.); (P.C.); Tel.: +39-089-96-9250 (S.M.); +39-089-96-9242 (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.P.); (E.S.); (S.F.R.); (G.A.)
- European Biomedical Research Institute of Salerno, 84125 Salerno, Italy
- Correspondence: (S.M.); (P.C.); Tel.: +39-089-96-9250 (S.M.); +39-089-96-9242 (P.C.)
| |
Collapse
|