1
|
Peng K, Yue L, Song X, Zhang Q, Wang Y, Cui X. Preparation, characterization and evaluation of microwave-assisted synthesized selenylation Codonopsis pilosula polysaccharides. Int J Biol Macromol 2024; 273:133228. [PMID: 38897504 DOI: 10.1016/j.ijbiomac.2024.133228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
In this work, the selenylation Codonopsis pilosula polysaccharide (Se-CPPS) were synthesized using an optimized microwave-assisted method. Then, physicochemical properties, including molecular weight, particle size, valence state of selenium, antioxidant capacity, release mechanism of selenium under gastrointestinal conditions, as well as their effects on HT-29 cell viability were comprehensively investigated. The results demonstrated that Se-CPPS with the highest selenium content (21.71 mg/g) was synthesized using 0.8% nitric acid concentration under microwave conditions of 90 min at 70 °C. FTIR and XPS analysis revealed that Se was bound to the polysaccharide chain in the form of O-Se-O and O-H···Se, with a valence state of either 0 or +4. In vitro investigations on antioxidant activity and selenium release capacity indicated that selenization not only enhanced the antioxidant activity of CPPS but also endowed Se-CPPS with robust selenium release capability in simulated gastric digestion. The effects of Se-CPPS on HT-29 cells was further investigated by CCK-8 method. The results showed that the selenide modification effectively reduced the toxicity of Na2SeO3 and enhanced the viability of CPPS. The findings of this study offer valuable methodological guidance for the synthesis of Se-polysaccharides with superior functional properties.
Collapse
Affiliation(s)
- Kaitao Peng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Linqing Yue
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - XiaoXiao Song
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.
| |
Collapse
|
2
|
Li W, Qiu Z, Ma Y, Zhang B, Li L, Li Q, He Q, Zheng Z. Preparation and Characterization of Ginger Peel Polysaccharide-Zn (II) Complexes and Evaluation of Anti-Inflammatory Activity. Antioxidants (Basel) 2022; 11:antiox11122331. [PMID: 36552539 PMCID: PMC9774354 DOI: 10.3390/antiox11122331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
The present study aimed to explore the improvement of the bioactivity of ginger peel polysaccharides (GPs) by the modification of zinc after structural characterization. The obtained GP-Zn (II) complexes consisted dominantly of glucose and galactose in a mass proportion of 95.10:2.10, with a molecular weight of 4.90 × 105 Da and a Zn content of 21.17 mg/g. The chelation of GPs and Zn (II) was mainly involved in the O-H of hydroxyl groups, and this interaction reduced the crystallinity and decreased the asymmetry of GPs, with a slight effect on the thermal stability. The administration of GPs and their Zn (II) complexes effectively alleviated CuSO4-induced inflammatory response in zebrafish (Tg: zlyz-EGFP) via down-regulating the mRNA expression levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-12 and TNF-α) and upregulating the expression of anti-inflammatory cytokine (IL-10). Furthermore, the modification of Zn (II) enhanced the inflammation-inhibiting effect of polysaccharides. Therefore, GP-Zn (II) complexes could be applied as a candidate anti-inflammatory agent for the treatment of chronic inflammation-related diseases.
Collapse
Affiliation(s)
- Wenwen Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yue Ma
- Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Institute of Agri-Food Processing and Nutrition, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Bin Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Lingyu Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Qiulin Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Qiuxia He
- Science and Technology Service Platform of Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Correspondence: (Q.H.); (Z.Z.)
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (Q.H.); (Z.Z.)
| |
Collapse
|
3
|
Wang W, Kou F, Wang J, Quan Z, Zhao S, Wang Y, Hu X, Sun H, Cao L. Pretreatment with millet-derived selenylated soluble dietary fiber ameliorates dextran sulfate sodium-induced colitis in mice by regulating inflammation and maintaining gut microbiota balance. Front Nutr 2022; 9:928601. [PMID: 36159466 PMCID: PMC9494682 DOI: 10.3389/fnut.2022.928601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory activation and intestinal flora imbalance play key roles in the development and progression of inflammatory bowel disease (IBD). Soluble dietary fiber (SDF) and selenium have been proven to be effective for preventing and relieving IBD. This study investigated and compared the therapeutic efficacy of millet-derived selenylated-soluble dietary fiber (Se-SDF) against dextran sulfate sodium (DSS)-induced colitis in mice alone or through the synergistic interaction between selenium and SDF. In female mice, Se-SDF markedly alleviated body weight loss, decreased colon length, reduced histological damage scores, and enhanced IL-10 expression to maintain the barrier function of intestinal mucosa compared to male mice. The 16S rRNA sequence analysis further indicated that pretreatment with Se-SDF restored the gut microbiota composition in female mice by increasing the relative abundance of Lactobacillus and the Firmicutes/Bacteroidetes ratio. In conclusion, these findings demonstrated that Se-SDF can protect against DSS-induced colitis in female mice by regulating inflammation and maintaining gut microbiota balance. This study, therefore, provides new insights into the development of Se-SDF as a supplement for the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Weihao Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fang Kou
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Juan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhigang Quan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuting Zhao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yifei Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xin Hu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hunan Sun
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
- Hunan Sun,
| | - Longkui Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
- *Correspondence: Longkui Cao,
| |
Collapse
|
4
|
Yue L, Song X, Cui X, Zhang Q, Tian X, Yang X, Wu Q, Liu Y, Ruan R, Wang Y. Synthesis, characterization, and evaluation of microwave-assisted fabricated selenylation Astragalus polysaccharides. Int J Biol Macromol 2022; 221:8-15. [PMID: 36075149 DOI: 10.1016/j.ijbiomac.2022.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/05/2022]
Abstract
Selenylation Astragalus polysaccharides (Se-APS) was fabricated by an optimized microwave-assisted method. Their physicochemical properties, antioxidant capacities and selenium (Se) release rate under gastrointestinal conditions were determined. Se-APS with the highest Se content (18.8 mg/g) was prepared in 0.4 % nitric acid, under the microwave conditions of 90 min and 80 °C. FTIR and XPS spectra indicated that Se was bound to the polysaccharide chain in the form of O-Se-O and O-H···Se, and most of Se+4 was reduced to Se0. Meanwhile, the micromorphology of Se-APS became clusters, loose and porous, which decreased its hydrodynamic particle size and negative surface charges. Besides, Se-APS displayed strong scavenging capacities towards ABTS and superoxide anion free radicals than Na2SeO3, and showed higher Se release rate (12.52 ± 0.31 %) under intestinal fluid comparing with gastric fluid (3.14 ± 0.38 %) during 8 h in vitro digestion. The results provided efficient preparation method references for selenylation polysaccharides, and broaden the application fields of APS.
Collapse
Affiliation(s)
- Linqing Yue
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiaoxiao Song
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang 330047, China.
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiaojie Tian
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiuhua Yang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qiuhao Wu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
5
|
Cui M, Fang Z, Song M, Zhou T, Wang Y, Liu K. Phragmites rhizoma polysaccharide-based nanocarriers for synergistic treatment of ulcerative colitis. Int J Biol Macromol 2022; 220:22-32. [PMID: 35932810 DOI: 10.1016/j.ijbiomac.2022.07.245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to construct Phragmites rhizoma polysaccharide-based nano-drug delivery systems (PRP2-SeNPs-H/Aza-Lips) for synergistically alleviating ulcerative colitis and to investigate the important roles of Phragmites rhizoma polysaccharide-based nanocarriers in PRP2-SeNPs-H/Aza-Lips. Phragmites rhizoma polysaccharide (PRP2) was isolated and used for the preparation of Phragmites rhizoma polysaccharide selenium nanoparticles with low selenium content (PRP2-SeNPs-L) and high selenium content (PRP2-SeNPs-H). Based on the electrostatic attraction between PRP2-SeNPs-H and azathioprine liposomes (Aza-Lips), PRP2-SeNPs-H/Aza-Lips were constructed for precise delivery of the model drug azathioprine (Aza) to colon lesions. Results showed that PRP2 significantly alleviated the clinical symptoms and colon tissue damage and down-regulated the levels of inflammatory factors in serum and colon, demonstrating beneficial effects on mice with ulcerative colitis. PRP2-SeNPs-L had better relieving effects on ulcerative colitis. Phragmites rhizoma polysaccharide-based nanocarriers may protect azathioprine liposomes against gastrointestinal digestion, enhance the therapeutic effects on ulcerative colitis, and significantly reduce liver damage from azathioprine, which helps to improve the efficacy and toxicity of clinical drugs.
Collapse
Affiliation(s)
- Mingxiao Cui
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhou Fang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengdi Song
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Taidi Zhou
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yongjie Wang
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Kehai Liu
- Department of Biopharmaceutics, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Canter for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
6
|
Li R, Geng C, Xiong Z, Cui Y, Liao E, Peng L, Jin W, Wang H. Evaluation of protein degradation and flavor compounds during the processing of Xuan'en ham. J Food Sci 2022; 87:3366-3385. [PMID: 35842841 DOI: 10.1111/1750-3841.16242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Protein degradation occurs during the processing of dry-cured ham, which has important influences on the flavor and quality of products. The aim of this work was to study the degradation kinetics of myofibrillar proteins (MPs) and sarcoplasmic proteins (SPs) extracted from the biceps femoris muscle during the processing of Xuan'en ham. A relationship between protein degradation and the flavor formation was found. During the processing of Xuan'en ham, MPs and SPs were mainly degraded in the salting stage and incipient fermentation. Accompanied by protein degradation, the content of carbonyl group in SPs increased gradually, but in MPs, it first increased and then decreased. Interconversion between sulfhydryl and disulfide bonds was investigated during this processing. Oxidation, degradation, and thermal effects significantly affected the surface hydrophobicity of proteins. More than one hundred volatile compounds have been identified at each stage of ham preparation. Among them, organic acids were the predominant group, followed by hydrocarbons, aldehydes, alcohols, ketones, and esters.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Cuizhu Geng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhemin Xiong
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yingying Cui
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - Lijuan Peng
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - Haibin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National R & D Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| |
Collapse
|
7
|
Isolation and Characterization of Flavonoids from Fermented Dandelion (Taraxacum mongolicum Hand.-Mazz.), and Assessment of Its Antioxidant Actions In Vitro and In Vivo. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Flavonoids are famous for their diverse sources, strong biological activity, and low toxicity and could be used as a natural antioxidant in animal husbandry. In this study, the purification process and antioxidant activity of flavonoids from fermented dandelion were investigated. The adsorption and desorption characterizations of AB-8 macroporous resin for flavonoids from fermented dandelion (FD) were determined and purification parameters were optimized. Qualitative analysis using UPLC-MS/MS analysis was explored to identify the components of the purified flavonoids of FD (PFDF). The antioxidant activity of PFDF in vitro and in vivo was analyzed. The optimum purification parameters were as follows: a sample concentration of 2 mg/mL, 120 mL of the sample volume, a pH of 2.0, and eluted with 90 mL of 70% ethanol (pH 5). After purification, the concentration of the flavonoids in PFDF was 356.08 mg/mL. By comparison with reference standards or the literature data, 135 kinds of flavonoids in PFDF were identified. Furthermore, PFDF had a strong reducing power and scavenging ability against 8-hydroxy radical and DPPH radical. PFDF can effectively reduce the oxidative stress of zebrafish embryos and IPCE-J2 cells by modulating antioxidant enzyme activities. In summary, the purified flavonoids from fermented dandelion have good antioxidant activity and display superior potential as a natural antioxidant in animal husbandry.
Collapse
|
8
|
Selenomethionine-Dominated Selenium-Enriched Peanut Protein Ameliorates Alcohol-Induced Liver Disease in Mice by Suppressing Oxidative Stress. Foods 2021; 10:foods10122979. [PMID: 34945529 PMCID: PMC8700997 DOI: 10.3390/foods10122979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Numerous natural compounds are considered as potential therapeutic agents against alcohol-induced liver disease (ALD). Research shows that selenium (Se) has a variety of bioactivities, including liver protecting ability. The present study based on in vitro cell culture models and in vivo mouse models was aimed at examining the contribution of selenomethionine (SeMet)-dominated Se-enriched peanut protein (SePP) to liver protection. SeMet and especially SePP reversed cell viability and cell death, inhibited ethanol induced CYP2E1 activation, decreased reactive oxygen species level, and restored GSH level. Hence, SeMet-dominated SePP alleviates alcohol-induced AML-12 cytotoxicity by suppressing oxidative stress. The p38-dependent mechanism was found to be responsible for SePP-induced Nrf-2 activation. Furthermore, supplementation with SePP and SeMet regulated lipid metabolism and reduced oxidative stress, minimizing liver damage in mice. Selenomethionine-dominated SePP possesses potential therapeutic properties and can be used to treat ALD through the suppression of oxidative stress.
Collapse
|
9
|
Dong W, Chen D, Chen Z, Sun H, Xu Z. Antioxidant capacity differences between the major flavonoids in cherry (Prunus pseudocerasus) in vitro and in vivo models. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110938] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Luo Z, Wang L, Zhou P, Feng R, Li X. Effect of in vitro simulated gastrointestinal digestion on structural characteristics and anti-proliferative activities of the polysaccharides from the shells of Juglans regia L. Food Chem Toxicol 2021; 150:112100. [PMID: 33677040 DOI: 10.1016/j.fct.2021.112100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/24/2023]
Abstract
The present research was designed to investigate the effects of simulated gastrointestinal digestion in vitro on the structural characteristics and anti-proliferative activities of polysaccharides from the shells of Juglans regia L. (JRP). Results suggested that JRP was composed of glucose, ribose, galactose, mannose, arabinose and rhamnose in a molar ratio of 10.7:4.9:16.4:2.3:10.8:2.3, with the molecular weight distributed from 3.21 × 105 to 4.55 × 105 Da. JRP belonged to non-crystalline substance, with irregular, smooth and compact morphological characteristics. Nevertheless, during gastrointestinal digestion in vitro, the physicochemical properties of JRP including molecular weight, monosaccharide composition, crystalline properties and morphology were significantly changed, accompanying with the increase of reducing sugar in digestive juice. Through measurements of anti-proliferation activities, the results showed that the digested JRP could remarkably inhibit the viabilities of HeLa cells by induction of apoptosis as a result of the excessive ROS accumulation and cell cycle arrest at G2/M phase, all of which were pronouncedly stronger than the ones induced by undigested JRP. These findings suggested that JRP processed by gastrointestinal digestion possessed more potential anti-proliferative applications that need to be exploited.
Collapse
Affiliation(s)
- Zhen Luo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Lu Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| | - Peng Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Ru Feng
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China
| | - Xiaoyu Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, 066004, PR China.
| |
Collapse
|
11
|
Li P, Li K, Zou C, Tong C, Sun L, Cao Z, Yang S, Lyu Q. Selenium Yeast Alleviates Ochratoxin A-Induced Hepatotoxicity via Modulation of the PI3K/AKT and Nrf2/Keap1 Signaling Pathways in Chickens. Toxins (Basel) 2020; 12:toxins12030143. [PMID: 32106596 PMCID: PMC7150738 DOI: 10.3390/toxins12030143] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the protective effects of selenium yeast (Se-Y) against hepatotoxicity induced by ochratoxin A (OTA). The OTA-induced liver injury model was established in chickens by daily oral gavage of 50 µg/kg OTA for 21 days. Serum biochemistry analysis, antioxidant analysis, as well as the qRT-PCR and Western blot (WB) analyses were then used to evaluate oxidative damage and apoptosis in chicken liver tissue. The results showed that Se-Y significantly increased liver coefficient induced by OTA (P < 0.05). OTA + Se-Y treated group revealed that Se-Y reduced the OTA-induced increase in glutamic pyruvic transaminase (ALT), glutamic oxaloacetic transaminase (AST) and malonaldehyde (MDA) content, and reversed the decrease in antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) (P < 0.05). In this study, we found that OTA is involved in the mRNA expression levels about Nrf2/Keap1 and PI3K/AKT signaling pathways, such as oxidative stress-related genes (Nrf2, GSH-Px, GLRX2 and Keap1) and apoptosis-related genes (Bax, Caspase3, P53, AKT, PI3K and Bcl-2). Besides, significant downregulations of protein expression of HO-1, MnSOD, Nrf2 and Bcl-2, as well as a significant upregulation of Caspase3 and Bax levels were observed after contaminated with OTA (P < 0.05). Notably, OTA-induced apoptosis and oxidative damage in the liver of chickens were reverted back to normal level in the OTA + Se-Y group. Our findings indicate that pretreatment with Se-Y effectively ameliorates OTA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (K.L.); (C.Z.); (C.T.); (L.S.)
| | - Kang Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (K.L.); (C.Z.); (C.T.); (L.S.)
| | - Chao Zou
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (K.L.); (C.Z.); (C.T.); (L.S.)
| | - Cui Tong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (K.L.); (C.Z.); (C.T.); (L.S.)
| | - Lin Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (K.L.); (C.Z.); (C.T.); (L.S.)
| | - Zhongjun Cao
- Tieling City Inspection and Testing and Certification Service Center (Animal Product Safety Testing Station), Tieling 112000, China;
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (K.L.); (C.Z.); (C.T.); (L.S.)
- Correspondence: (S.Y.); (Q.L.)
| | - Qiufeng Lyu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (P.L.); (K.L.); (C.Z.); (C.T.); (L.S.)
- Correspondence: (S.Y.); (Q.L.)
| |
Collapse
|
12
|
Wu C, Zhao M, Bu X, Qing Z, Wang L, Xu Y, Yang Y, Bai J. Preparation, characterization, antioxidant and antiglycation activities of selenized polysaccharides from blackcurrant. RSC Adv 2020; 10:32616-32627. [PMID: 35516509 PMCID: PMC9056601 DOI: 10.1039/d0ra06462a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/28/2020] [Indexed: 11/21/2022] Open
Abstract
An ultrasound-assisted enzymatic method was used to extract the polysaccharides from blackcurrant fruits (BP), and then a nitric acid-sodium selenite method was employed to prepare twelve kinds of selenized blackcurrant polysaccharides (SBPs). Among them, SBP-1, SBP-2 and SBP-3 with different selenium contents of 250 ± 11, 312 ± 15 and 643 ± 24 μg g−1, displayed relatively higher 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙) scavenging activities than the others. After treating with a Sepharose-6B chromatography column, the purified blackcurrant polysaccharide (PBP) and three selenized polysaccharides (PSBP-1, PSBP-2, PSBP-3) with high purity were obtained. Compared with PBP, PSBPs possessed a larger absolute value of zeta potential (ZP) and smaller particle size, indicating the positive influence of selenized modification on physical stability of polysaccharides. Ultraviolet (UV), Fourier transform infrared (FT-IR) and circular dichroism (CD) spectra confirmed that selenium had been introduced onto the polysaccharide structure. X-ray diffraction (XRD) and I2–KI reaction results indicated that selenized modification did not cause an obvious change in crystal form and branch structure of blackcurrant polysaccharides. In addition, PSBPs were superior to PBP in antioxidant and antiglycation capacities, and the bioactivities of PSBPs were significantly improved in positive correlation with selenium content. This study suggested that PSBPs may be a potential selenium source and serve as functional food and medicine. An ultrasound-assisted enzymatic method was used to extract the polysaccharides from blackcurrant fruits (BP), and then a nitric acid-sodium selenite method was employed to prepare twelve kinds of selenized blackcurrant polysaccharides (SBPs).![]()
Collapse
Affiliation(s)
- Changzong Wu
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Meimei Zhao
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Xueying Bu
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Ziya Qing
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Libo Wang
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Yaqin Xu
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Yu Yang
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| | - Jingwen Bai
- College of Art and Science
- Northeast Agricultural University
- Harbin 150030
- People's Republic of China
| |
Collapse
|