1
|
B J, R R. A critical review on pharmacological properties of sulfated polysaccharides from marine macroalgae. Carbohydr Polym 2024; 344:122488. [PMID: 39218536 DOI: 10.1016/j.carbpol.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The marine ecosystem contains an assorted range of organisms, among which macroalgae stands out marine resources as an invaluable reservoir of structurally diverse bioactive compounds. Marine macroalgae are considered as primary consumers have gained more attention for their bioactive components. Sulfated polysaccharides (SPs) are complex polymers found in macroalgae that play a crucial role in their cell wall composition. This review consolidates high-tech methodologies employed in the extraction of macroalgal SPs, offering a valuable resource for researchers focuses in the pharmacological relevance of marine macromolecules. The pharmacological activities of SPs, focusing on their therapeutic action by encompassing diverse study models are summarized. Furthermore, in silico docking studies facilitates a comprehensive understanding of SPs interactions with their binding sites providing a valuable insight for future endeavors. The biological properties of algal SPs, along with a brief reference to mode of action based on different targets are presented. This review utilizes up-to-date research discoveries across various study models to elucidate the biological functions of SPs, focusing on their molecular-level mechanisms and offering insights for prospective investigations. Besides, the significance of SPs from seaweeds is highlighted, showcasing their potential beneficial applications in promoting human health. With promising biomedical prospects, this review explores the extensive uses and experimental evidence supporting the important roles of SPs in various fields.
Collapse
Affiliation(s)
- Jegadeshwari B
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajaram R
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
2
|
Jeyaraj G. Exploring seaweed polysaccharides: natural therapeutics for Inflammatory bowel disease. Nat Prod Res 2024:1-3. [PMID: 39086198 DOI: 10.1080/14786419.2024.2378202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Affiliation(s)
- Gnanaprakash Jeyaraj
- Center for Global Health Research, Saveetha Medical College and Hospital Saveetha Institute of Medical and Technical Sciences, Kancheepuram District, India
| |
Collapse
|
3
|
Wang Z, Zeng B, Xue H, Liu C, Song W. Blidingia sp. extracts improve intestinal health and reduce diarrhoea in weanling piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:1198-1205. [PMID: 37203256 DOI: 10.1111/jpn.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/20/2023]
Abstract
Blidingia sp. is a prominent fouling green macroalga and we previously found that extracts from Blidingia sp. alleviated intestinal inflammation in mice challenged with lipopolysaccharides. However, whether these extracts are effective in weanling piglets remains unknown. In the present study, Blidingia sp. extracts were supplemented in the diet and their effects on growth performance, incidence of diarrhoea and intestinal function in weanling piglets were explored. The results showed that diets supplemented with 0.1% or 0.5% Blidingia sp. extract significantly increased average daily body weight gain and feed intake in weanling piglets. Meanwhile, piglets supplemented with 0.5% Blidingia sp. extract showed decreased incidence of diarrhoea as well as reduced fecal water and Na+ content. Furthermore, the diet supplemented with 0.5% Blidingia sp. extracts improved intestinal morphology, as indicated by the results of hematoxylin and eosin staining. Diet supplemented with 0.5% Blidingia sp. extracts also improved tight junction function, as indicated by increased expression of Occludin, Claudin-1 and Zonula occludens-1, and alleviated the inflammatory response, as indicated by decreased tumor necrosis factor-α and interleukin-6 (IL6) contents and increased IL10 levels. Taken together, our results showed that Blidingia sp. extracts had beneficial effects in weanling piglets and we suggest that Blidingia sp. extracts could be potentially used as an additive for piglets.
Collapse
Affiliation(s)
- Zongling Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Boxin Zeng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Haoran Xue
- Department of Clinical Laboratory, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Chunyan Liu
- Department of Integrated Traditional Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wei Song
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Laboratory of Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
4
|
Liyanage NM, Nagahawatta DP, Jayawardena TU, Jeon YJ. The Role of Seaweed Polysaccharides in Gastrointestinal Health: Protective Effect against Inflammatory Bowel Disease. Life (Basel) 2023; 13:life13041026. [PMID: 37109555 PMCID: PMC10143107 DOI: 10.3390/life13041026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a prominent global public health issue. Anti-inflammatory medications, immunosuppressants, and biological therapies are currently used as treatments. However, they are often unsuccessful and have negative consequences on human health. Thus, there is a tremendous demand for using natural substances, such as seaweed polysaccharides, to treat IBD's main pathologic treatment targets. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae, and fucoidan in brown algae. These are effective candidates for drug development and functional nutrition products. Algal polysaccharides treat IBD through therapeutic targets, including inflammatory cytokines, adhesion molecules, intestinal epithelial cells, and intestinal microflora. This study aimed to systematically review the potential therapeutic effects of algal polysaccharides on IBD while providing the theoretical basis for a nutritional preventive mechanism for IBD and the restoration of intestinal health. The results suggest that algal polysaccharides have significant potential in complementary IBD therapy and further research is needed for fully understanding their mechanisms of action and potential clinical applications.
Collapse
Affiliation(s)
- N M Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - D P Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
| | - Thilina U Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
5
|
Production of Corn Protein Hydrolysate with Glutamine-Rich Peptides and Its Antagonistic Function in Ulcerative Colitis In Vivo. Foods 2022; 11:foods11213359. [PMID: 36359970 PMCID: PMC9657542 DOI: 10.3390/foods11213359] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Ulcerative colitis is a typical chronic inflammatory disease of the gastrointestinal tract, which has become a serious hazard to human health. The purpose of the present study was to evaluate the antagonistic effect of corn protein hydrolysate with glutamine-rich peptides on ulcerative colitis. The sequential hydrolysis of corn gluten meal by Alcalase and Protamex was conducted to prepare the hydrolysate, and then the mouse ulcerative colitis model induced by dextran sulfate sodium was applied to evaluate its biological activities. The results indicated that the hydrolysate significantly improved weight loss (p < 0.05), reduced the colonic shortening and the disease activity index, diminished the infiltration of inflammatory cells in the colonic tissue, and reduced the permeability of the colonic mucosa in mice. In addition, the hydrolysate decreased the contents of pro-inflammatory factors IL-1β, IL-6, and TNF-α, increased the anti-inflammatory factor IL-10 and oxidative stress markers GSH-Px and SOD in the animal tests. Moreover, the hydrolysate also regulated the abundance and diversity of the intestinal microbiota, improved the microbiota structure, and increased the content of beneficial bacteria including Lactobacillus and Pediococcus. These results indicated that the hydrolysate might be used as an alternative natural product for the prevention of ulcerative colitis and could be further developed into a functional food.
Collapse
|
6
|
Polysaccharides from Garlic Protect against Liver Injury in DSS-Induced Inflammatory Bowel Disease of Mice via Suppressing Pyroptosis and Oxidative Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2042163. [PMID: 36017235 PMCID: PMC9398839 DOI: 10.1155/2022/2042163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Inflammatory bowel disease (IBD), a widespread intestinal disease threatening human health, is commonly accompanied by secondary liver injury (SLI). Pyroptosis and oxidative stress act as an important role underlying the pathophysiology of SLI, during which a large number of proinflammatory cytokines and oxidative intermediates can be produced, thereby causing the liver severely damaged. Suppression of pyroptosis and oxidative damage can be considered one of the critical strategies for SLI therapy. Garlic, a natural food with eatable and medicinal functions, is widely used in people's daily life. There is no study about the alleviation of garlic against IBD accompanied with SLI. This study is aimed at investigating the efficacy of the polysaccharides from garlic (PSG) in treating IBD and SLI, as well as its pharmacological mechanism. The results showed that PSG significantly alleviated dextran sulfate sodium-induced IBD determined by evaluating the bodyweight loss, disease activity index, colon length, and colonic pathological examination of mice. PSG significantly reduced the colonic inflammation by reversing the levels of myeloperoxidase, diamine oxidase activity, iNOS, and COX2 and strengthened the intestinal barrier by increasing the expressions of ZO1, occludin, and MUC2 of IBD mice. Furthermore, PSG strongly alleviated SLI determined by assessing the liver morphological change, liver index, levels of ALT and AST, and liver pathological change of mice. Mechanically, PSG reduced the high levels of LPS, IL-1β, IL18, NLRP3, gasdermin D, caspase 1, ASC, TLR4, MyD88, NF-κB, phospho-NF-κB, while it increased IL-10 in the livers of mice, indicating that PSG alleviated SLI by suppressing inflammation and pyroptosis. Additionally, PSG significantly inhibited the oxidative damage in the liver tissues of SLI mice by reducing the levels of ROS, MDA, Keap-1, 8-OHDG, and phospho-H2AX and increasing the levels of GPX4, SOD2, HO1, NQO1, and Nrf2. These findings suggested that the garlic polysaccharides could be used to treat IBD accompanied with SLI in humans.
Collapse
|
7
|
Li S, Huo X, Qi Y, Ren D, Li Z, Qu D, Sun Y. The Protective Effects of Ginseng Polysaccharides and Their Effective Subfraction against Dextran Sodium Sulfate-Induced Colitis. Foods 2022; 11:foods11060890. [PMID: 35327312 PMCID: PMC8949837 DOI: 10.3390/foods11060890] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/08/2023] Open
Abstract
Polysaccharides from Panax ginseng are natural carbohydrates with multiple activities. However, little was known about its functions on colitis. In this study, we aim to investigate the protective effects of ginseng polysaccharides and its effective subfraction on dextran sodium sulfate (DSS)-induced colitis. Water soluble ginseng polysaccharides (WGP) were obtained from dry ginseng root, then purified to neutral fraction (WGPN) and acidic fraction (WGPA) by ion exchange chromatography. An animal model was constructed with male Wistar rats, which were treated with a normal diet (con group), DSS (DSS group), WGP (WGP group), WGPN (WGPN group), and WGPA (WGPA group), respectively. Both WGP and WGPA alleviated the colitis symptoms and colon structure changes of colitis rats. They decreased the disease activity index (DAI) scores and improved colon health; reduced colon damage and recovered the intestinal barrier via regulating the tight-junction-related proteins (ZO-1 and Occludin); downregulated inflammatory cytokines (IL-1β, IL-2, IL-6, and IL-17) and inhibited the TLR4/MyD88/NF-κB-signaling pathway in the colon; regulated the diversity and composition of gut microbiota, especially the relative abundance of Ruminococcus; enhanced the production of SCFAs. In conclusion, WGP exerted a protective effect against colitis with its acidic fraction (WGPA) as an effective fraction. The results support the utilization and investigation of ginseng polysaccharides as a potential intervention strategy for the prevention of colitis.
Collapse
Affiliation(s)
- Shanshan Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
- Department of Biology, College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Xiaohui Huo
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
| | - Yuli Qi
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
| | - Duoduo Ren
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
| | - Zhiman Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
| | - Di Qu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
| | - Yinshi Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (S.L.); (X.H.); (Y.Q.); (D.R.); (Z.L.); (D.Q.)
- Correspondence: ; Tel.: +86-431-81919580
| |
Collapse
|
8
|
Yuan D, Li C, Huang Q, Fu X, Dong H. Current advances in the anti-inflammatory effects and mechanisms of natural polysaccharides. Crit Rev Food Sci Nutr 2022; 63:5890-5910. [PMID: 35021901 DOI: 10.1080/10408398.2022.2025535] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic, multifactorial and inflammatory disease occurring in the colon tract. Bioactive polysaccharides from natural resources have attracted extensive attention due to their safety, accessibility and good bioactivities. In recent years, a variety of natural bioactive polysaccharides have been proven to possess anti-inflammatory effects on treating acute colitis. The objective of this review was to give an up-to-date review on the anti-inflammatory effects and mechanisms of natural polysaccharides on acute colitis. The anti-inflammatory effects of natural polysaccharides on acute colitis concerning clinical symptoms amelioration, colon tissue repairment, anti-oxidative stress alleviation, anti-inflammation, immune regulation, and gut microbiota modulation were comprehensively summarized. In addition, inducible murine models for assessing the anti-inflammatory effects of natural polysaccharides on acute colitis were also concluded. This review will offer the comprehensive understanding of anti-inflammatory mechanisms of natural polysaccharides in acute colitis, and render theoretical basis for the development and application of natural polysaccharides in drug and functional food.
Collapse
Affiliation(s)
- Dan Yuan
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chao Li
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Qiang Huang
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
9
|
Ficus pandurata Hance Inhibits Ulcerative Colitis and Colitis-Associated Secondary Liver Damage of Mice by Enhancing Antioxidation Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2617881. [PMID: 34966476 PMCID: PMC8710911 DOI: 10.1155/2021/2617881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD), a global disease threatening human health, is commonly accompanied by secondary liver damage (SLD) mediated by the gut-liver axis. Oxidative stress acts a critical role in the onset of IBD, during which excessive oxidation would destroy the tight junctions between intestinal cells, promote proinflammatory factors to penetrate, and thereby damage the intestinal mucosa. Ficus pandurata Hance (FPH) is widely used for daily health care in South China. Our previous study showed that FPH protected acute liver damage induced by alcohol. However, there is no study reporting FPH treating ulcerative colitis (UC). This study is designed to investigate whether FPH could inhibit UC and reveal its potential mechanism. The results showed that FPH significantly alleviated the UC disease symptoms including the body weight loss, disease activity index (DAI), stool consistency changing, rectal bleeding, and colon length loss of UC mice induced by dextran sulfate sodium (DSS) and reversed the influences of DSS on myeloperoxidase (MPO) and diamine oxidase activity (DAO). FPH suppressed UC via inhibiting the TLR4/MyD88/NF-κB pathway and strengthened the gut barrier of mice via increasing the expressions of ZO-1 and occludin and enhancing the colonic antioxidative stress property by increasing the levels of T-SOD and GSH-Px and the expressions of NRF2, HO-1, and NQO1 and reducing MDA level and Keap1, p22-phox, and NOX2 expressions. Furthermore, FPH significantly inhibited SLD related to colitis by reducing the abnormal levels of the liver index, ALT, AST, and cytokines including TNFα, LPS, LBP, sCD14, and IL-18 in the livers, as well as decreasing the protein expressions of NLRP3, TNFα, LBP, CD14, TLR4, MyD88, NF-κB, and p-NF-κB, suggesting that FPH alleviated UC-related SLD via suppressing inflammation mediated by inhibiting the TLR4/MyD88/NF-κB pathway. Our study firstly investigates the anticolitis pharmacological efficacy of FPH, suggesting that it can be enlarged to treat colitis and colitis-associated liver diseases in humans.
Collapse
|
10
|
Natural Food Polysaccharides Ameliorate Inflammatory Bowel Disease and Its Mechanisms. Foods 2021; 10:foods10061288. [PMID: 34199820 PMCID: PMC8227517 DOI: 10.3390/foods10061288] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 02/08/2023] Open
Abstract
Natural polysaccharides and their metabolites’ short chain fatty acids (SCFAs) have attracted much attention. Recently, they have shown great potential in attenuating systemic inflammation activities, especially in inflammatory bowel disease (IBD). IBD is a complex pathological process and is related to epithelial damage and microbiota imbalance in the gut. Recent studies have indicated that natural polysaccharides could improve IBD recovery by different mechanisms. They could not only influence the ratio of intestine microbiota, but also regulate the secretion levels of immunity cytokines through multiple pathways, the latter including modulation of the TLR/MAPK/NF-κB signaling pathways and stimulation of G-protein-coupled receptors. Moreover, they could increase intestinal integrity and modulate oxidative stress. In this review, recent research about how natural polysaccharides impact the pathogenesis of IBD are summarized to prove the association between polysaccharides and disease recovery, which might contribute to the secretion of inflammatory cytokines, improve intestine epithelial damage, reduce oxidative stress, sustain the balanced microenvironment of the intestines, and finally lower the risk of IBD.
Collapse
|
11
|
Wei H, Shi Y, Yuan Z, Huang Z, Cai F, Zhu J, Zhang W, Li J, Xiong Q, Wang Y, Wang X. Isolation, Identification, and Anti-Inflammatory Activity of Polysaccharides of Typha angustifolia. Biomacromolecules 2021; 22:2451-2459. [PMID: 34024108 DOI: 10.1021/acs.biomac.1c00235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study aimed to purify, structurally characterize, and evaluate the anti-inflammatory activity of the polysaccharide extracted from Typha angustifolia. Two purified polysaccharides (PTA-1 and PTA-2) were obtained via DEAE-52 cellulose chromatography. Their structural characterizations and antioxidant activity were in vitro analyzed. To evaluate the anti-inflammatory activity of PTA-2, the levels of inflammatory cytokines, intracellular ROS production, and the inhibitory effects of the transcriptional activation of the nuclear factor kappa B (NF-κB) signaling pathway were determined. PTA-1 comprises glucose (100%) with α-(1 → 3) glycosidic bonds, and PTA-2 comprises glucose (66.7%) and rhamnose (33.3%) formed by β-(1 → 3) glycosidic bonds. PTA-1 and PTA-2 showed strong antioxidant activity in vitro. Moreover, PTA-2 intervention (50, 100, and 200 μg/mL) suppressed the production of inflammatory cytokines, the activation of NF-κB signaling, and reactive oxygen species production significantly. The results identified PTA-2 as a natural product that could be applied in anti-inflammatory drugs.
Collapse
Affiliation(s)
- Huan Wei
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yuqi Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixiang Yuan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhinan Huang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Fuhong Cai
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jingfeng Zhu
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Wanwan Zhang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Jia Li
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingping Xiong
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yunpeng Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Xiaoli Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
12
|
Zong X, Cheng Y, Xiao X, Fu J, Wang F, Lu Z, Wang Y, Jin M. Protective effects of sulfated polysaccharide from Enterobacter cloacae Z0206 against DSS-induced intestinal injury via DNA methylation. Int J Biol Macromol 2021; 183:861-869. [PMID: 33940061 DOI: 10.1016/j.ijbiomac.2021.04.182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
We previously obtained and characterized a novel sulfated derivative of the exopolysaccharides from Enterobacter cloacae Z0206 (SEPS). This study aimed at investigating the effects and mechanism of SEPS against dextran sulfate sodium (DSS) induced intestinal injury. The results showed that SEPS increased the proliferation and survival of intestinal epithelial cells during DSS stimulation. Furthermore, SEPS maintained the barrier function and inflammatory response via JAK2 and MAPK signaling to protect against DSS-induced intestinal injury. Mechanistically, SEPS elevated the DNA methylation in the promoter region to negatively regulate the JAK2 and MAPKs expression. Thus, the current study shows the potential effects and mechanism of SEPS on DSS-induced intestinal epithelial cell injury.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Yuanzhi Cheng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Xiao Xiao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Fengqin Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China.
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China; Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, 310058 Hangzhou, PR China.
| |
Collapse
|
13
|
Li C, Wu G, Zhao H, Dong N, Wu B, Chen Y, Lu Q. Natural-Derived Polysaccharides From Plants, Mushrooms, and Seaweeds for the Treatment of Inflammatory Bowel Disease. Front Pharmacol 2021; 12:651813. [PMID: 33981232 PMCID: PMC8108135 DOI: 10.3389/fphar.2021.651813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease impairing the gastrointestinal tract, and its incidence and prevalence have been increasing over time worldwide. IBD greatly reduces peoples' quality of life and results in several life-threatening complications, including polyp, toxic colonic dilatation, intestinal perforation, gastrointestinal bleeding, and cancerization. The current therapies for IBD mainly include drugs for noncritical patients and operation for critical patients. However, continuous use of these drugs causes serious side effects and increased drug resistance, and the demand of effective and affordable drugs with minimal side effects for IBD sufferers is urgent. Natural-derived polysaccharides are becoming a research hotspot for their therapeutic effects on IBD. This study focuses on the research progress of various natural polysaccharides from plants, seaweeds, and mushrooms for the treatment of IBD during recent 20 years. Regulation of oxidative stress, inflammatory status, gut microbiota, and immune system and protection of the intestinal epithelial barrier function are the underlying mechanisms for the natural-derived polysaccharides to treat IBD. The excellent efficacy and safety of polysaccharides make them promising candidates for IBD therapy.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Guosong Wu
- Pharmacy Department, Baiyun Branch of Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hualang Zhao
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Na Dong
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Bowen Wu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Yujia Chen
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| |
Collapse
|
14
|
The water-soluble non-starch polysaccharides from natural resources against excessive oxidative stress: A potential health-promoting effect and its mechanisms. Int J Biol Macromol 2021; 171:320-330. [PMID: 33421468 DOI: 10.1016/j.ijbiomac.2021.01.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022]
Abstract
The water-soluble non-starch polysaccharides isolated from natural resources have become research hotpots in the field of food science and human health due to widely distributed in nature and low toxicity. It has indicated that the health-promoting effect of water-soluble non-starch polysaccharides were partly attributable to against excessive oxidative stress. Indeed, excessive oxidative stress in the body has been reported in occurrence of disease. The water-soluble non-starch polysaccharides from natural resources exhibit antioxidant activity to against oxidative stress via scavenging free radicals promoting antioxidant enzymes activity and/or regulating antioxidant signaling pathways. In this review, the water-soluble non-starch polysaccharides as medicine agent and the factor affecting antioxidant as well as the relationship between oxidative stress and disease are summarized, and the mechanisms of water-soluble non-starch polysaccharides therapy in disease are also discussed. It will provide a theoretical basis for natural polysaccharides used for the treatment of diseases.
Collapse
|
15
|
Yang L, Lin Q, Han L, Wang Z, Luo M, Kang W, Liu J, Wang J, Ma T, Liu H. Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway. Food Funct 2020; 11:5965-5975. [PMID: 32662806 DOI: 10.1039/d0fo01102a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The present study is undertaken to assess the ability of insoluble dietary fiber (IDF) and soluble dietary fiber (SDF) extracted from soy hulls to relieve colitis in dextran sulfate sodium (DSS) induced inflammatory bowel disease (IBD) in a BALB/C mouse model. We characterized dietary fiber (DF) structures by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Water retention capacity (WRC), water swelling capacity (WSC), oil adsorption capacity (OAC), glucose adsorption capacity (GAC), and the bile acid retardation index (BRI) were measured. The unique surface and chemical structural characteristics endowed DF with good absorption capacity and hydration ability, along with delayed glucose diffusion and absorption of bile acids. IBD was induced with a solution containing 5% DSS in male mice, which were administered a total oral dose of IDF (300 mg kg-1) and SDF (300 mg kg-1) three times per day after successful model establishment. All the mice were assessed weekly for weight change, diarrhea index, and fecal bleeding index. Levels of TLR-4 and NF-κB proteins were measured with western blotting analysis. Cytokine TNF-α in the serum was detected with an enzyme-linked immunosorbent assay (ELISA). Histological methods (H&E) were used to observe part of the mouse colon. The gut microbiota in the colonic contents was analyzed by 16S rRNA gene sequencing. DF decreased weight loss, diarrhea, and fecal bleeding, and also slowed serum TNF-α release. Increases in the levels of NF-κB proteins in inflamed colon tissue were also significantly suppressed by DF treatment. DF ameliorates the colitis induced decrease in gut microbiota species richness. The effect of SDF seemed clearer: the relative abundance of Barnesiella, Lactobacillus, Ruminococcus and Flavonifractor at the genus level was greater than that in the normal control group.
Collapse
Affiliation(s)
- Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China. and China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Qian Lin
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Lin Han
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Ziyi Wang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Mingshuo Luo
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Wanrong Kang
- Scientific Research Center, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Tao Ma
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|