1
|
Wang C, You Y, Huang W, Zhan J. The high-value and sustainable utilization of grape pomace: A review. Food Chem X 2024; 24:101845. [PMID: 39386151 PMCID: PMC11462180 DOI: 10.1016/j.fochx.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
A large portion of global grape production has been utilized for wine production, accompanied by tremendous pressure to dispose grape pomace. To achieve circular economy, the high-value recycling of grape pomace must be considered. The social level barriers to circular economy promotion are also important constraints, like the acceptability of upcycled products. The main components of grape pomace and their utilization are summarized, and critical reviews of green extraction methods analyzed the key points of grape pomace recycling process to achieve the goal of sustainability in the production process, culminating in discussions of the factors affecting the acceptability of upcycled products. Grape pomace bioactive substances have higher added value. To realize its green extraction, various emerging technologies need to be made a comprehensive choice. Nevertheless, the acceptability of upcycled products is influenced by personal, context and product factors, optimizing them is essential to remove the constraints of circular economy development.
Collapse
Affiliation(s)
- Changsen Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| |
Collapse
|
2
|
He Z, Yang C, Yuan Y, He W, Wang H, Li H. Basic constituents, bioactive compounds and health-promoting benefits of wine skin pomace: A comprehensive review. Crit Rev Food Sci Nutr 2023; 64:8073-8090. [PMID: 36995277 DOI: 10.1080/10408398.2023.2195495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Wine pomace (WP) is a major byproduct generated during winemaking, and skin pomace (SKP) comprises one of the most valuable components of WP. Since SKP differs in composition and properties from seed pomace (SDP), precise knowledge of SKP will aid the wine industry in the development of novel, high-value products. The current review summarizes recent advances in research relating to SKP presents a comprehensive description of the generation, composition, and bioactive components, primarily focusing on the biological activities of SKP, including antioxidant, gastrointestinal health promotion, antibacterial, anti-inflammatory, anticancer, and metabolic disease alleviation properties. Currently, the separation and recovery of skins and seeds is an important trend in the wine industry for the disposal of winemaking byproducts. In comparison to SDP, SKP is rich in polyphenols including anthocyanins, flavonols, phenolic acids, stilbenes, and some proanthocyanidins, as well as dietary fiber (DF). These distinctive benefits afford SKP the opportunity for further development and application. Accordingly, the health-promoting mechanism and appropriate application of SKP will be further elucidated in terms of physiological activity, with the progress of biochemical technology and the deepening of related research.
Collapse
Affiliation(s)
- Zhouyang He
- College of Enology, Northwest A&F University, Yangling, China
| | - Chenlu Yang
- College of Enology, Northwest A&F University, Yangling, China
| | - Yuxin Yuan
- College of Enology, Northwest A&F University, Yangling, China
| | - Wanzhou He
- College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| | - Hua Li
- College of Enology, Northwest A&F University, Yangling, China
- China Wine Industry Technology Institute, Yinchuan, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, China
| |
Collapse
|
3
|
Oliveira MOA, Leonço ÁR, Pavani VB, Barbosa IR, Campos MM. Omega-3 Effects on Ligature-Induced Periodontitis in Rats with Fructose-Induced Metabolic Syndrome. Inflammation 2023; 46:388-403. [PMID: 36171491 DOI: 10.1007/s10753-022-01741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022]
Abstract
Both periodontal disease (PD) and metabolic syndrome (MS) represent disorders of concern worldwide. Current evidence indicates that PD and MS might negatively influence each other, increasing the risk for cardiovascular diseases (CVD), via mutual inflammatory pathways. A failure of the inflammation resolution mechanisms is crucial for these comorbidities. Fish oil-derived omega-3 has been linked with resolution-driven responses in different pathological conditions during the last years. This study evaluated the impacts of omega-3 supplementation in a rat model combining ligature-induced PD and 10% fructose intake-elicited MS. Our main findings show that 10% fructose ingestion led to an elevation of Lee index and white adipose tissue (WAT) weight, along with hepatic alterations, accompanied by an increase of leptin, and a decrement of adiponectin serum amounts, regardless of PD induction. Noteworthy, the co-induction of PD and MS resulted in higher levels of glycemia and triglycerides, being this latter effect lessened by omega-3 supplementation. In this case, the beneficial effects of omega-3 might be associated with its ability to recover the decline of serum adiponectin levels in rats with PD plus MS. As expected, PD induction led to alveolar bone loss, independent of MS induction. However, the supplementation with omega-3 restored alveolar bone in PD control animals, but not in the rats with PD combined with MS. Our study extends the knowledge about PD and MS as comorbidities, showing novel effects of omega-3 supplementation in this context.
Collapse
Affiliation(s)
- Maysa O A Oliveira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Álvaro R Leonço
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Curso de Graduação em Medicina, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vinícius B Pavani
- Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Isadora R Barbosa
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria M Campos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
4
|
Molecular Mechanism of Fucoidan Nanoparticles as Protector on Endothelial Cell Dysfunction in Diabetic Rats' Aortas. Nutrients 2023; 15:nu15030568. [PMID: 36771275 PMCID: PMC9920843 DOI: 10.3390/nu15030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Antioxidants have an important role in protecting against diabetes complications such as vascular endothelial cell damage. Fucoidan has strong antioxidant properties, therefore the aim of this study was to investigate the protective mechanism of fucoidan nanoparticles through the pathway of antioxidant activity against streptozotocin-induced diabetic aortic endothelial cell dysfunction in rats. Fucoidan nanoparticles are made utilizing high-energy ball milling. This research consists of five groups, namely: control rats, rats were administered aquadest; diabetic rats, rats were administered streptozotocin (STZ); fucoidan nanoparticle rats, rats were administered STZ and fucoidan nanoparticles. Aortic tissue was collected for the evaluation of ROS (reactive oxygen species), Malondialdehyde (MDA), superoxide Dismutase (SOD), Glutathione Peroxidase (GPx), Nuclear factor erythroid-2-related factor 2 (Nrf2), Nitric Oxide (NO), cyclic Guanosine Monophosphate (cGMP), relaxation response of acetylcholine (Ach), and the diameter of the aorta. The size distribution of the fucoidan nanoparticles was 267.2 ± 42.8 nm. Administration of fucoidan nanoparticles decreased the levels of ROS and MDA, and increased the levels of SOD, levels of GPx, Nrf2 expression, NO levels, cGMP expression, the relaxation response of Ach, and lumen diameter of the aorta, which are significantly different when compared with diabetic rats, p < 0.05. In this study, we concluded that the mechanism pathway of fucoidan nanoparticles prevents aortic endothelial cell dysfunction in diabetic rats through antioxidant activity by reducing ROS and MDA and incrementing SOD levels, GPx levels, and Nrf2 expression. All of these can lead to an elevated relaxation response effect of Ach and an increase in the lumen diameter of the aorta, which indicates a protective effect of fucoidan nanoparticles on aortic endothelial cells.
Collapse
|
5
|
The Role of By-Products of Fruit and Vegetable Processing for the Dietary Treatment of Cardiovascular Risk Factors: A Narrative Review. Antioxidants (Basel) 2022; 11:antiox11112170. [DOI: 10.3390/antiox11112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Polyphenols-rich food has been utilized to induce a positive effect on human health. Considering that fruit and vegetable by-products (seeds, pomace, and peels) are sources of polyphenols, previous studies have investigated the effect of dietary supplementation with food by-products on cardiometabolic disorders, such as high fasting blood glucose, dyslipidemia, and obesity. Endothelial dysfunction has also been considered a cardiometabolic parameter, given that it precedes cardiovascular disease. However, there is a scarcity of narrative reviews reporting the effect of food by-product supplementation on cardiometabolic disorders in animal and human clinical trials. In this sense, the present narrative review aims to investigate the impact of fruit and vegetable by-product supplementation on cardiometabolic disorders in humans and animals, exploring the possible mechanisms whenever possible. Research articles were retrieved based on a search of the following databases: PubMed, ScienceDirect, and Google Scholar using the following keywords and synonyms combined: (“fruit by-products” or “food waste” or “pomace” or “bagasse” or “seeds” or “waste products”) AND (“heart disease risk factors” or “endothelial dysfunction” or “atherosclerosis”). It was shown that fruit and vegetable by-products could efficiently improve cardiometabolic disorders in patients with chronic diseases, including hypertension, type II diabetes mellitus, and dyslipidemia. Such effects can be induced by the polyphenols present in food by-products. In conclusion, food by-product supplementation has a positive effect on cardiometabolic disorders. However, further studies investigating the effect of food by-products on cardiometabolic disorders in humans are still necessary so that solid conclusions can be drawn.
Collapse
|
6
|
Antonenko O, Guguchkina T, Chemisova L, Antonenko M, Yakimenko E. Changes in the antioxidant activity of red dry wines depending on the production method. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224601016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is found that a production method affects the antioxidant activity of researched red dry wines made grapes produced in Kuban area. According to results of multivariate analysis of variance, grape variety (59% of influence), production method (27%) and usage of antioxidants during must extraction (7%) influenced on antioxidant activity values.
Collapse
|
7
|
Garba MS, Bouderbala S. Olive cake reduces blood pressure, oxidative stress, aortic endothelial dysfunction and vascular remodeling, in dexamethasone-induced hypertensive rats. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-220001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND/AIM: Hypertension is a global public health problem and a leading cause of cardiovascular morbidity and mortality. In this paper, we study the effect of olive cake (OC) on blood pressure, endothelial dysfunction, redox status and vascular remodeling in dexamethasone-induced hypertensive (HT) rats. METHODS: HT rats were divided into two groups fed standard diet supplemented (HT-OC) or not (HT) with OC at 7.5% for 28 days. A control (C) was submitted to standard diet for the same experimental period. RESULTS: Systolic, diastolic and mean blood pressures were higher in the HT vs C and decreased in HT-OC vs HT. Aortic nitric oxide value was decreased in the HT vs the C and increased in HT-OC vs HT. Aortic lipid and protein oxidation products were higher in the HT than C and lower in the HT-OC vs HT. Aortic antioxidant enzymes activities were reduced in HT than control and increased in the HT-OC vs HT. The aortic wall thickness, medial cross-sectional area, media to lumen ratio and the number of VSMCs were higher in the HT and the OC has regressed vascular redemptions. CONCLUSION: In hypertensive rats, OC may alleviate blood pressure and arterial remodeling by suppressing oxidative stress, increasing antioxidant activity, improving endothelial function, preventing smooth muscle proliferation and thickening of the tunica media.
Collapse
Affiliation(s)
- Mansourou Samba Garba
- Laboratoire de Nutrition Clinique et Métabolique, Département de Biologie, Faculté des Sciences de la Nature et de la Vie. Université Oran1 Ahmed Ben Bella, Oran, Algérie
| | - Sherazede Bouderbala
- Laboratoire de Nutrition Clinique et Métabolique, Département de Biologie, Faculté des Sciences de la Nature et de la Vie. Université Oran1 Ahmed Ben Bella, Oran, Algérie
| |
Collapse
|
8
|
López-Fernández-Sobrino R, Torres-Fuentes C, Bravo FI, Muguerza B. Winery by-products as a valuable source for natural antihypertensive agents. Crit Rev Food Sci Nutr 2022; 63:7708-7721. [PMID: 35275757 DOI: 10.1080/10408398.2022.2049202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypertension (HTN) is one of the leading causes of death in the world. Agri-food by-products are emerging as a novel source of natural antihypertensive agents allowing for their valorization and making food and agricultural industries more environmentally friendly. In this regard, wine making process generates large amounts of by-products rich in phenolic compounds that have shown potential to exert several beneficial effects including antihypertensive properties. The aim of this study was to review the blood pressure-lowering effects of winery by-products. In addition, molecular mechanisms involved in their bioactivity were also evaluated. Among the winery by-products, grape seed extracts have widely shown antihypertensive properties in both animal and human studies. Moreover, recent evidence suggests that grape stem, skin and pomace and wine lees may also have great potential to manage HTN, although more studies are needed in order to confirm their potential in humans. Improvement of endothelial dysfunction and reduction of oxidative stress associated with HTN are the main mechanisms involved in the blood pressure-lowering effects of these by-products.
Collapse
Affiliation(s)
- Raúl López-Fernández-Sobrino
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| | - Cristina Torres-Fuentes
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, Spain
| |
Collapse
|
9
|
Cardiovascular protection effect of a Northeastern Brazilian lyophilized red wine in spontaneously hypertensive rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods 2021; 10:foods10081854. [PMID: 34441631 PMCID: PMC8391153 DOI: 10.3390/foods10081854] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is a status of imbalance between oxidants and antioxidants, resulting in molecular damage and interruption of redox signaling in an organism. Indeed, oxidative stress has been associated with many metabolic disorders due to unhealthy dietary patterns and may be alleviated by properly increasing the intake of antioxidants. Thus, it is quite important to adopt a healthy dietary mode to regulate oxidative stress and maintain cell and tissue homeostasis, preventing inflammation and chronic metabolic diseases. This review focuses on the links between dietary nutrients and health, summarizing the role of oxidative stress in ‘unhealthy’ metabolic pathway activities in individuals and how oxidative stress is further regulated by balanced diets.
Collapse
|
11
|
Gerardi G, Cavia-Saiz M, Muñiz P. From winery by-product to healthy product: bioavailability, redox signaling and oxidative stress modulation by wine pomace product. Crit Rev Food Sci Nutr 2021; 62:7427-7448. [PMID: 33951976 DOI: 10.1080/10408398.2021.1914542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The wine pomace is the main winery by-products that suppose an economic and environmental problem and their use as a functional ingredient are being increasingly recognized as a good and inexpensive source of bioactive compounds. In this sense, it is known the potential health properties of wine pomace products in the prevention of disorders associated with oxidative stress and inflammation such as endothelial dysfunction, hypertension, hyperglycemia, diabetes, obesity. Those effects are due to the bioactive compounds of wine pomace and the mechanisms concern especially modulation of antioxidant/prooxidant activity, improvement of nitric oxide bioavailability, reduction of pro-inflammatory cytokines and modulation of antioxidant/inflammatory signal pathways. This review mainly summarizes the mechanisms of wine pomace products as modulators of oxidative status involved in cell pathologies as well as their potential therapeutic use for cardiovascular diseases. For this purpose, the review provides an overview of the findings related to the wine pomace bioactive compounds profile, their bioavailability and the action mechanisms for maintaining the redox cell balance involved in health benefits. The review suggests an important role for wine pomace product in cardiovascular diseases prevention and their regular food intake may attenuate the development and progression of comorbidities associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Gisela Gerardi
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Mónica Cavia-Saiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Pilar Muñiz
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|
12
|
Gerardi G, Casali CI, Cavia-Saiz M, Rivero-Pérez MD, Perazzo C, González-SanJosé ML, Muñiz P, Fernández Tome MC. Bioavailable wine pomace attenuates oxalate-induced type II epithelial mesenchymal transition and preserve the differentiated phenotype of renal MDCK cells. Heliyon 2020; 6:e05396. [PMID: 33294652 PMCID: PMC7689175 DOI: 10.1016/j.heliyon.2020.e05396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/27/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022] Open
Abstract
The functional renal epithelium is composed of differentiated and polarized tubular cells with a strong actin cortex and specialized cell-cell junctions. If, under pathological conditions, these cells have to resist higher kidney osmolarity, they need to activate diverse mechanisms to survive external nephrotoxic agents such as inflammation and oxidative stress. Wine pomace polyphenols exert protective effects on renal cells. In this study, two wine-pomace products and their protective effects upon promotion and preservation of normal cell differentiation and attenuation of oxalate-induced type II epithelial mesenchymal transition (EMT) are evaluated. Treatment with gastrointestinal and colonic bioavailable fractions from red (rWPP) and white (wWPP) wine pomaces, both in the presence and the absence of oxalate, showed similar cell numbers and nuclear size than the non-treated differentiated MDCK cells. Immunofluorescence analysis showed the reduction of morphological changes and the preservation of cellular junctions for the rWPP and wWPP pre-treatment of cells exposed to oxalate injury. Hence, both rWPP and wWPP attenuated oxalate type II EMT in MDCK cells that conserved their epithelial morphology and cellular junctions through the antioxidant activities of grape pomace polyphenols.
Collapse
Affiliation(s)
- Gisela Gerardi
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - Cecilia I. Casali
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Mónica Cavia-Saiz
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - María D. Rivero-Pérez
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - Cecilia Perazzo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - María L. González-SanJosé
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - Pilar Muñiz
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - María C. Fernández Tome
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|