1
|
Ye J, Yao J, Xu S, Xiao G, Jia Y, Xie N, Yan J, Ying X, Zhang H. Elucidating the substance basis and pharmacological mechanism of Fufang Qiling granules in modulating xanthine oxidase for intervention in hyperuricemia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118410. [PMID: 38848973 DOI: 10.1016/j.jep.2024.118410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Qiling granules (FQG), derived from the traditional Qiling Decoction with a longstanding clinical history, is utilized for the treatment of hyperuricemia (HUA). FQG is formulated with a combination of seven Chinese herbs based on the principles of traditional Chinese medicine (TCM) theories. Clinical evidence indicates that FQG exhibits favorable therapeutic effects in reducing uric acid (UA) levels and attenuating renal damage. AIM OF THIS STUDY To elucidate the potential active components and pharmacological mechanism of FQG in the treatment of HUA, and to provide an experimental basis for the development of efficient and low-toxicity TCM for HUA treatment. MATERIALS AND METHODS A HUA rat model induced by potassium oxonate and adenine was established to initially evaluate the hypouricemic effects of FQG. Chemical analyses were conducted using an ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Network pharmacology was used to investigate the active components and mechanism of FQG in the treatment of HUA. Potential Xanthine oxidase (XOD) inhibitors were screened from FQG based on ultrafiltration liquid chromatography and mass spectrometry (UF-LC-MS). Molecular docking, surface plasmon resonance (SPR) and circular dichroism (CD) spectroscopy were applied to validate the interactions between the active components and XOD. RESULTS In comparison to the model group, treatment with FQG significantly decreased serum UA, serum creatinine (CREA), serum blood urea nitrogen (BUN), and liver XOD activity. Additionally, the FQG administration notably ameliorated HUA-induced renal injury in rats. Through the pharmacodynamics of the HUA rat models and network pharmacology, it was found that XOD was a key pathway enzyme in UA metabolism. 18 XOD inhibitors were screened from FQG by UF-LC-MS, and 11 compounds with strong affinity were verified by SPR, molecular docking and CD spectroscopy. CONCLUSION In summary, flavonoids, organic acids and saponins may be the active components in FQG that alleviate HUA. The primary mechanism of FQG involves inhibiting XOD enzyme activity in the plasma to reduce UA production, alleviating renal tubular epithelial cell necrosis, tubulointerstitial injury, fibrosis, and urate deposition, ultimately exerting a therapeutic effect on HUA.
Collapse
Affiliation(s)
- Jiamin Ye
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Jiangyu Yao
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Shaojing Xu
- Research Institute of Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, 310030, China
| | - Guyu Xiao
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Yuwei Jia
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Ningjun Xie
- Research Institute of Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, 310030, China
| | - Jizhong Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China
| | - Xuhui Ying
- Research Institute of Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou, 310030, China.
| | - Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, No. 18, Chaowang Road, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Chen Y, Li H, Cai Y, Wang K, Wang Y. Anti-hyperuricemia bioactive peptides: a review on obtaining, activity, and mechanism of action. Food Funct 2024; 15:5714-5736. [PMID: 38752330 DOI: 10.1039/d4fo00760c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Hyperuricemia, a disorder of uric acid metabolism, serves as a significant risk factor for conditions such as hypertension, diabetes mellitus, renal failure, and various metabolic syndromes. The main contributors to hyperuricemia include overproduction of uric acid in the liver or impaired excretion in the kidneys. Despite traditional clinical drugs being employed for its treatment, significant health concerns persist. Recently, there has been growing interest in utilizing protein peptides sourced from diverse food origins to mitigate hyperuricemia. This article provides a comprehensive review of bioactive peptides with anti-hyperuricemia properties derived from animals, plants, and their products. We specifically outline the methods for preparing these peptides from food proteins and elucidate their efficacy and mechanisms in combating hyperuricemia, supported by in vitro and in vivo evidence. Uric acid-lowering peptides offer promising prospects due to their safer profile, enhanced efficacy, and improved bioavailability. Therefore, this review underscores significant advancements and contributions in identifying peptides capable of metabolizing purine and/or uric acid, thereby alleviating hyperuricemia. Moreover, it offers a theoretical foundation for the development of functional foods incorporating uric acid-lowering peptides.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, China
| | - Yunfei Cai
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, China
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing, China
- Institute of Modern Fermentation Engineering and Future Foods, Guangxi University, Nanning, 530004, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co. Ltd., Rizhao, 276800, China
| | - Yousheng Wang
- Institute of Modern Fermentation Engineering and Future Foods, Guangxi University, Nanning, 530004, China
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| |
Collapse
|
3
|
Ma N, Cai S, Sun Y, Chu C. Chinese Sumac ( Rhus chinensis Mill.) Fruits Prevent Hyperuricemia and Uric Acid Nephropathy in Mice Fed a High-Purine Yeast Diet. Nutrients 2024; 16:184. [PMID: 38257077 PMCID: PMC10819650 DOI: 10.3390/nu16020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Hyperuricemia (HUA) is a prevalent chronic disease, characterized by excessive blood uric acid levels, that poses a significant health risk. In this study, the preventive effects and potential mechanisms of ethanol extracts from Chinese sumac (Rhus chinensis Mill.) fruits on HUA and uric acid nephropathy were comprehensively investigated. The results demonstrated a significant reduction in uric acid levels in hyperuricemia mice after treatment with Chinese sumac fruit extract, especially in the high-dose group, where the blood uric acid level decreased by 39.56%. Visual diagrams of the kidneys and hematoxylin and eosin (H&E)-stained sections showed the extract's effectiveness in protecting against kidney damage caused by excessive uric acid. Further investigation into its mechanism revealed that the extract prevents and treats hyperuricemia by decreasing uric acid production, enhancing uric acid excretion, and mitigating the oxidative stress and inflammatory reactions induced by excessive uric acid in the kidneys. Specifically, the extract markedly decreased xanthine oxidase (XOD) levels and expression in the liver, elevated the expression of uric acid transporters ABCG2, and lowered the expression of uric acid reabsorption proteins URAT1 and SLC2A9. Simultaneously, it significantly elevated the levels of endogenous antioxidant enzymes (SOD and GSH) while reducing the level of malondialdehyde (MDA). Furthermore, the expression of uric-acid-related proteins NLRP3, ACS, and Caspase-3 and the levels of IL-1β and IL-6 were significantly reduced. The experimental results confirm that Chinese sumac fruit extract can improve HUA and uric acid nephropathy in mice fed a high-purine yeast diet. This finding establishes a theoretical foundation for developing Chinese sumac fruit as a functional food or medicine for preventing and treating HUA.
Collapse
Affiliation(s)
| | | | | | - Chuanqi Chu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (N.M.); (S.C.)
| |
Collapse
|
4
|
Meng W, Chen L, Ouyang K, Lin S, Zhang Y, He J, Wang W. Chimonanthus nitens Oliv. leaves flavonoids alleviate hyperuricemia by regulating uric acid metabolism and intestinal homeostasis in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
5
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Wang X, Cui Z, Luo Y, Huang Y, Yang X. In vitro xanthine oxidase inhibitory and in vivo anti-hyperuricemic properties of sodium kaempferol-3'-sulfonate. Food Chem Toxicol 2023; 177:113854. [PMID: 37230458 DOI: 10.1016/j.fct.2023.113854] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Xanthine oxidase (XO), a key enzyme in purine catabolism, catalyzes the oxidation of xanthine to uric acid in the body, but overproduction of uric acid may lead to hyperuricemia. This study aims to investigate in vitro XO inhibitory and in vivo anti-hyperuricemic properties of sodium kaempferol-3'-sulfonate (KS). The kinetic analysis indicates that KS is a reversible competitive inhibitor and has significant inhibitory effects on XO activity with an IC50 value of 0.338 μM. Fluorescence spectra suggested that KS could cause fluorescence quenching and conformational changes of XO due to the formation of a KS-XO complex. Molecular docking studies demonstrated that KS interacted with several amino acid residues of XO by the π-π stacking, hydrogen bonds, and hydrophobic interactions. The inhibitory mechanism of KS on XO activity might be the insertion of KS into the active site of XO to prevent the entrance of the substrate xanthine and induce conformational changes of XO. The results carried out in hyperuricemic mice showed that KS reduced serum XO activity, serum uric acid (UA), creatinine (CRE), and urea nitrogen (BUN) levels, as well as alleviating renal histopathological injury. These findings suggest that KS may be a new potent XO inhibitor against hyperuricemia-related diseases.
Collapse
Affiliation(s)
- Xueqin Wang
- Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Zhenzhen Cui
- Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Yuan Luo
- Rongchang Campus, Southwest University, Chongqing, 402460, China
| | - Yu Huang
- Pharmacy College, Ningxia Medical University, Yinchuan, 750004, China
| | - Xinbin Yang
- Rongchang Campus, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
7
|
Cheng-yuan W, Jian-gang D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front Nutr 2023; 10:1186161. [PMID: 37377486 PMCID: PMC10291132 DOI: 10.3389/fnut.2023.1186161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperuricemia is another common metabolic disease, which is considered to be closely related to the development of many chronic diseases, in addition to the "three highs." Currently, although drugs show positive therapeutic effects, they have been shown to produce side effects that can damage the body. There is growing evidence that medicinal and edible plants and their bioactive components have a significant effect on hyperuricemia. In this paper, we review common medicinal and edible plants with uric acid-lowering effects and summarize the uric acid-lowering mechanisms of different bioactive components. Specifically, the bioactive components are divided into five categories: flavonoids, phenolic acids, alkaloids, polysaccharides, and saponins. These active substances exhibit positive uric acid-lowering effects by inhibiting uric acid production, promoting uric acid excretion, and improving inflammation. Overall, this review examines the potential role of medicinal and edible plants and their bioactive components as a means of combating hyperuricemia, with the hope of providing some reference value for the treatment of hyperuricemia.
Collapse
|
8
|
Chen J, Zheng Y, Gong S, Zheng Z, Hu J, Ma L, Li X, Yu H. Mechanisms of theaflavins against gout and strategies for improving the bioavailability. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154782. [PMID: 36990009 DOI: 10.1016/j.phymed.2023.154782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Gout is a crystal related arthropathy caused by monosodium urate deposition. At present, the identification of appropriate treatments and new drugs to reduce serum uric acid levels and gout risk is a major research area. PURPOSE Theaflavins are naturally occurring compounds characterized by a benzodiazepine skeleton. The significant benefits of theaflavins have been well documented. A large number of studies have been carried out and excellent anti-gout results have been achieved in recent years. STUDY DESIGN A comprehensive analysis of the mechanism of the anti-gout effect of theaflavins is presented through a literature review and network pharmacology prediction, and strategies for increasing the bioavailability of theaflavins are summarized. METHODS In this review, the active components and pharmacological mechanisms of theaflavins in the treatment of gout were summarized, and the relationship between theaflavins and gout, the relevant components, and the potential mechanisms of anti-gout action were clarified by reviewing the literature on the anti-gout effects of theaflavins and network pharmacology. RESULTS Theaflavins exert anti-gout effects by down regulating the gene and protein expression of glucose transporter 9 (GLUT9) and uric acid transporter 1 (URAT1), while upregulating the mRNA expression levels of organic anion transporter 1 (OAT1), organic cation transporter N1 (OCTN1), organic cation transporters 1/2 (Oct1/2), and organic anion transporter 2 (OAT2). Network pharmacology prediction indicate that theaflavins can regulate the AGE-RAGE and cancer signaling pathways through ATP-binding cassette subfamily B member 1 (ABCB1), recombinant mitogen activated protein kinase 14 (MAPK14), telomerase reverse tranase (TERT), signal transducer and activator of transcription 1 (STAT1), matrix metalloproteinase 2 (MMP2), B-cell lymphoma-2 (BCL2), and matrix metalloproteinase 14 (MMP14) targets for anti-gout effects. CONCLUSION This review presents the mechanisms of anti-gout action of theaflavins and strategies for improving the bioavailability of theaflavins, as well as providing research strategies for anti-gout treatment measures and the development of novel anti-gout drugs.
Collapse
Affiliation(s)
- Jingzi Chen
- Chinese Medicine Rehabilitation Department, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Yanchao Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Sihan Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Zhigang Zheng
- Wuxi Teaturn Bioengineering Co., Ltd., Wuxi 214000, China
| | - Jing Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Lin Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China.
| | - Hongjian Yu
- Wuxi Teaturn Bioengineering Co., Ltd., Wuxi 214000, China.
| |
Collapse
|
9
|
Sui Y, Xu D, Sun X. Identification of anti-hyperuricemic components from Coix seed. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Li J, Li J, Fan L. Recent Advances in Alleviating Hyperuricemia Through Dietary Sources: Bioactive Ingredients and Structure–activity Relationships. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2124414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Jun Li
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- Institute of Food Processing Technology, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Jinwei Li
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Liuping Fan
- State Key laboratory of Food Science & Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborat Innovat Ctr Food Safety & Qual Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Mehmood A, Althobaiti F, Zhao L, Usman M, Chen X, Alharthi F, Soliman MM, Shah AA, Murtaza MA, Nadeem M, Ranjha MMAN, Wang C. Anti-inflammatory potential of stevia residue extract against uric acid-associated renal injury in mice. J Food Biochem 2022; 46:e14286. [PMID: 35929489 DOI: 10.1111/jfbc.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022]
Abstract
Abnormal uric acid level result in the development of hyperuricemia and hallmark of various diseases, including renal injury, gout, cardiovascular disorders, and non-alcoholic fatty liver. This study was designed to explore the anti-inflammatory potential of stevia residue extract (STR) against hyperuricemia-associated renal injury in mice. The results revealed that STR at dosages of 150 and 300 mg/kg bw and allopurinol markedly modulated serum uric acid, blood urea nitrogen, and creatinine in hyperuricemic mice. Serum and renal cytokine levels (IL-18, IL-6, IL-1Β, and TNF-α) were also restored by STR treatments. Furthermore, mRNA and immunohistochemistry (IHC) analysis revealed that STR ameliorates UA (uric acid)-associated renal inflammation, fibrosis, and EMT (epithelial-mesenchymal transition) via MMPS (matrix metalloproteinases), inhibiting NF-κB/NLRP3 activation by the AMPK/SIRT1 pathway and modulating the JAK2-STAT3 and Nrf2 signaling pathways. In summary, the present study provided experimental evidence that STR is an ideal candidate for the treatment of hyperuricemia-mediated renal inflammation. PRACTICAL APPLICATIONS: The higher uric acid results in hyperuricemia and gout. The available options for the treatment of hyperuricemia and gout are the use of allopurinol, and colchicine drugs, etc. These drugs possess several undesirable side effect. The polyphenolic compounds are abundantly present in plants, for example, stevia residue extract (STR) exert a positive effect on human health. From this study results, we can recommend that polyphenolic compounds enrich STR could be applied to develop treatment options for the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Department of Food Science and Technology, University of Haripur, Haripur, Pakistan
| | - Fayez Althobaiti
- Biotechnology Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| | - Muhammad Usman
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China.,Department of Food Science and Technology, Riphah International University Faisalabad, Punjab, Pakistan
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Fahad Alharthi
- Biological Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Amjad Abbas Shah
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | | | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
12
|
Shi M, Lu Y, Wu J, Zheng Z, Lv C, Ye J, Qin S, Zeng C. Beneficial Effects of Theaflavins on Metabolic Syndrome: From Molecular Evidence to Gut Microbiome. Int J Mol Sci 2022; 23:7595. [PMID: 35886943 PMCID: PMC9317877 DOI: 10.3390/ijms23147595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many natural foods and herbs rich in phytochemicals have been proposed as health supplements for patients with metabolic syndrome (MetS). Theaflavins (TFs) are a polyphenol hydroxyl substance with the structure of diphenol ketone, and they have the potential to prevent and treat a wide range of MetS. However, the stability and bioavailability of TFs are poor. TFs have the marvelous ability to alleviate MetS through antiobesity and lipid-lowering (AMPK-FoxO3A-MnSOD, PPAR, AMPK, PI3K/Akt), hypoglycemic (IRS-1/Akt/GLUT4, Ca2+/CaMKK2-AMPK, SGLT1), and uric-acid-lowering (XO, GLUT9, OAT) effects, and the modulation of the gut microbiota (increasing beneficial gut microbiota such as Akkermansia and Prevotella). This paper summarizes and updates the bioavailability of TFs, and the available signaling pathways and molecular evidence on the functionalities of TFs against metabolic abnormalities in vitro and in vivo, representing a promising opportunity to prevent MetS in the future with the utilization of TFs.
Collapse
Affiliation(s)
- Meng Shi
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Yuting Lu
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Junling Wu
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Zhibing Zheng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Chenghao Lv
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Jianhui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China;
| | - Si Qin
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| | - Chaoxi Zeng
- Laboratory of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (M.S.); (Y.L.); (J.W.); (Z.Z.); (C.L.)
| |
Collapse
|
13
|
Chen Y, Luo L, Hu S, Gan R, Zeng L. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7065-7090. [PMID: 35236179 DOI: 10.1080/10408398.2022.2040417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperuricemia is an abnormal purine metabolic disease that occurs when there is an excess of uric acid in the blood, associated with cardiovascular diseases, hypertension, gout, and renal disease. Dietary intervention is one of the most promising strategies for preventing hyperuricemia and controlling uric acid concentrations. Tea (Camellia sinensis) is known as one of the most common beverages and the source of dietary polyphenols. However, the effect of tea on hyperuricemia is unclear. Recent evidence shows that a lower risk of hyperuricemia is associated with tea intake. To better understand the anti-hyperuricemia effect of tea, this review first briefly describes the pathogenesis of hyperuricemia and the processing techniques of different types of tea. Next, the epidemiological and experimental studies of tea and its bioactive compounds on hyperuricemia in recent years were reviewed. Particular attention was paid to the anti-hyperuricemia mechanisms targeting the hepatic uric acid synthase, renal uric acid transporters, and intestinal microbiota. Additionally, the desirable intake of tea for preventing hyperuricemia is provided. Understanding the anti-hyperuricemia effect and mechanisms of tea can better utilize it as a preventive dietary strategy.HighlightsHigh purine diet, excessive alcohol/fructose consumption, and less exercise/sleep are the induction factors of hyperuricemia.Tea and tea compounds showed alleviated effects for hyperuricemia, especially polyphenols.Tea (containing caffeine or not) is not associated with a higher risk of hyperuricemia.Xanthine oxidase inhibition (reduce uric acid production), Nrf2 activation, and urate transporters regulation (increase uric acid excretion) are the potential molecular targets of anti-hyperuricemic effect of tea.About 5 g tea intake per day may be beneficial for hyperuricemia prevention.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Liyong Luo
- College of Food Science, Southwest University, Chongqing, China
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
| | - Shanshan Hu
- College of Food Science, Southwest University, Chongqing, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Sun R, Kan J, Cai H, Hong J, Jin C, Zhang M. In vitro and in vivo ameliorative effects of polyphenols from purple potato leaves on renal injury and associated inflammation induced by hyperuricemia. J Food Biochem 2022; 46:e14049. [PMID: 34981522 DOI: 10.1111/jfbc.14049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/07/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
In the present study, the ameliorative effects of polyphenols from purple potato leaves (PSPLP) on hyperuricemia were investigated. HPLC-MS analysis showed that PSPLP was mainly composed of caffeoylquinic acid derivatives (84%). PSPLP inhibited the levels of cytokines (IL-1β, IL-6, and TNF-α) in monosodium urate-induced RAW264.7 cells. In vivo, PSPLP significantly inhibited the level of uric acid in hyperuricemia mice from 209.6 to 166.6 μM, and significantly interfered with the activities of xanthine oxidase (XOD) and adenosine deaminase in liver, the activity of XOD decreased from 13.5 to 11.6 U/gprot. PSPLP can decrease serum creatinine level from 105 to 59 μM, and urea nitrogen level from 21.9 to 14.1 mM, which can effectively protect kidney. These results provide a reference for future research and application of PSPLP as a functional food to intervene hyperuricemia and associated inflammation. PRACTICAL APPLICATIONS: This study evaluated the effect of polyphenols from purple potato leaves (PSPLP) on hyperuricemia. The results suggested that PSPLP has an important role in the intervention of hyperuricemia and hyperuricemic-related inflammation or renal injury, and can be used in the application of functional foods. These results provided a basis for further study on the biological activities of polyphenols from purple sweet potato leaves.
Collapse
Affiliation(s)
- Rui Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Huahao Cai
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Jinhai Hong
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| | - Man Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
15
|
Teng J, Liu Y, Zeng W, Zhou M, Liu Y, Huang Y, Chen Q. In vitro
enzymatic synthesis of a monomeric theaflavin using a polyphenol oxidase isozyme from tea (
Camellia sinensis
) leaf. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jie Teng
- Department of Tea Science Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Yang Liu
- Department of Tea Science Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Wen Zeng
- Department of Tea Science South China Agricultural University Guangzhou Guangdong 510642 China
| | - Mengzhen Zhou
- Department of Tea Science South China Agricultural University Guangzhou Guangdong 510642 China
| | - Yafang Liu
- Department of Tea Science Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| | - Yahui Huang
- Department of Tea Science South China Agricultural University Guangzhou Guangdong 510642 China
| | - Qincao Chen
- Department of Tea Science Jiangxi Agricultural University Nanchang Jiangxi 330045 China
| |
Collapse
|
16
|
Xie Q, Cai X, Dong X, Wang Y, Sun M, Tai L, Xu Y. Effects of epigallocatechin-3-gallate combined with ascorbic acid and glycerol on the stability and uric acid-lowering activity of epigallocatechin-3-gallate. PHARMACEUTICAL BIOLOGY 2021; 59:157-166. [PMID: 33556300 PMCID: PMC8871600 DOI: 10.1080/13880209.2021.1878235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Epigallocatechin-3-gallate (EGCG) is unstable and easily oxidized, which limits its applications. Ascorbic acid (Vc) is a natural antioxidant. OBJECTIVE The effects of EGCG combined with Vc and glycerol on stability and uric acid-lowering activity of EGCG were examined. MATERIALS AND METHODS EGCG (aqueous solution), EGCG + Vc (aqueous solution), EGCG (glycerol solution) and EGCG + Vc (glycerol solution) were prepared and incubated under different conditions in vitro. The recovery rate of EGCG was calculated by HPLC. Kunming mice were randomly divided into normal control group, model group, allopurinol (5 mg/kg), EGCG (10 mg/kg), EGCG + Vc (both 10 mg/kg), EGCG (10 mg/kg) + glycerol (60%), and EGCG (10 mg/kg) + Vc (10 mg/kg) + glycerol (60%) (n = 6). Allopurinol was injected intraperitoneally to mice, others were administered intragastrically to (2 cases) mice. All mice were continuously administrated for 7 days, once a day. RESULTS EGCG recovery rates of EGCG group and EGCG + Vc + glycerol group respectively reached to 32.34 ± 1.86% and 98.90 ± 0.64% when they were incubated for 4 h at 80 °C. EGCG recovery rates reached to 91.82 ± 5.13% (incubated for 6 h at pH 8) and 88.85 ± 2.63% (incubated for 4 h in simulated intestinal fluid) when EGCG incubated with Vc and glycerol. Compared with the model group, UA values of EGCG + Vc + glycerol group reduced by 43.49% while EGCG group reduced by 25.63%. The activities of xanthine oxidase (XOD, 31.41 U/gprot) and adenosine deaminase (ADA, 10.05 U/mgprot), and the mRNA expression levels of glucose transporter 9 (GLUT9, 1.03) and urate transporter 1 (URAT1, 0.44) in EGCG + Vc + glycerol group were notably lower than those of EGCG group (38.12 U/gprot, 13.16 U/mgprot, 1.54, and 0.55). The mRNA expression levels of ATP-binding cassette superfamily G member 2 (ABCG2, 1.39) and organic anion transport 1/2 (OAT1/2, 2.34, 2.53) in EGCG + Vc + glycerol group were notably higher than those of EGCG group (0.57, 1.13, and 1.16). DISCUSSION AND CONCLUSIONS Our findings suggest that when EGCG used in combination with Vc and glycerol could effectively increase its biology activities and can be generalized to the broader pharmacological studies. This sheds light on the development and application of EGCG in the fields of food and medicine.
Collapse
Affiliation(s)
- Qianjin Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Xiaqiang Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Xu Dong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Ying Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Minghui Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Lingling Tai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Yan Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| |
Collapse
|
17
|
Wei L, Ji H, Song W, Peng S, Zhan S, Qu Y, Chen M, Zhang D, Liu S. Hypouricemic, hepatoprotective and nephroprotective roles of oligopeptides derived from Auxis thazard protein in hyperuricemic mice. Food Funct 2021; 12:11838-11848. [PMID: 34746942 DOI: 10.1039/d1fo02539b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The oligopeptides derived from Auxis thazard protein (ATO) are a class of small peptides with molecular weight <1 kDa and good bioactivity. This paper aimed to explore the hypouricemic, hepatoprotective, and nephroprotective effects of ATO and its potential mechanisms in hyperuricemia in mice induced by potassium oxonate. The results showed that ATO significantly reduced serum UA, serum creatinine levels, inhibited XOD and ADA activities in the liver (p < 0.05), and accelerated UA excretion by downregulating the gene expression of renal mURAT1 and mGLUT9 and upregulating the gene expression of mABCG2 and mOAT1. ATO could also reduce the levels of liver MDA, increase the activities of SOD and CAT, and reduce the levels of IL-1β, MCP-1 and TNF-α. Histological analysis also showed that ATO possessed hepatoprotective and nephroprotective activities in hyperuricemic mice. Thus, ATO could reduce the serum UA level in hyperuricemic mice by decreasing UA production and promoting UA excretion from the kidney, suggesting that ATO could be developed as a dietary supplement for hyperuricemia treatment.
Collapse
Affiliation(s)
- Liuyi Wei
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China. .,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.,Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, P.R. China.,Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, P.R. China.,Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, P.R. China
| | - Wenkui Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Shuo Peng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Suhong Zhan
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Yushan Qu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Ming Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Di Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China.
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, P.R. China. .,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, P.R. China.,Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, P.R. China.,Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, P.R. China.,Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, P.R. China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, P.R. China
| |
Collapse
|
18
|
Chen D, Zhao Y, Peng J, Zhang Y, Gao J, Wu W, Xie D, Hu Z, Lin Z, Dai W. Metabolomics Analysis Reveals Four Novel N-Ethyl-2-pyrrolidinone-Substituted Theaflavins as Storage-Related Marker Compounds in Black Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14037-14047. [PMID: 34780189 DOI: 10.1021/acs.jafc.1c05850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tea market is currently oversupplied, and unsold tea often needs to be properly stored for a period of time. However, the chemical changes occurring in black tea during storage are limitedly understood. In this study, a comprehensive nontargeted and targeted metabolomics approach was used to investigate the dynamic changes in compounds in time-series (0-19 months)-stored black teas. The contents of flavanols, theaflavins (TFs), theasinensins, procyanidins, most phenolic acids, amino acids, quercetin-O-glycosides, and myricetin-O-glycosides decreased during storage, while the contents of N-ethyl-2-pyrrolidinone-substituted flavanols, flavone-C-glycosides, and most kaempferol-O-glycosides increased. More importantly, four novel compounds strongly positively correlated with storage duration (r = 0.922-0.969) were structurally assigned as N-ethyl-2-pyrrolidinone-substituted TFs and validated with synthetic reactions of TFs and theanine standards. The content of N-ethyl-2-pyrrolidinone-substituted TFs was 51.54 μg/g in black tea stored for 19 months. To the best of our knowledge, N-ethyl-2-pyrrolidinone-substituted TFs were discovered in tea for the first time.
Collapse
Affiliation(s)
- Dan Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Yanni Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Jiakun Peng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Yue Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Jianjian Gao
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Wenliang Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, P. R. China
| | - Dongchao Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Zhengyan Hu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, P. R. China
| | - Zhi Lin
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, P. R. China
| |
Collapse
|
19
|
Cai X, Liu Z, Dong X, Wang Y, Zhu L, Li M, Xu Y. Hypoglycemic and lipid lowering effects of theaflavins in high-fat diet-induced obese mice. Food Funct 2021; 12:9922-9931. [PMID: 34492673 DOI: 10.1039/d1fo01966j] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Theaflavins (TFs) are the characteristic components of black tea and have been widely acknowledged for their health benefits. The current study aimed to investigate the effects and mechanism of TFs, TF1, TF2a and TF3 on glycolipid metabolism in obese mice induced by a high-fat diet (HFD). Mice were randomly divided into seven groups (n = 8 per group) as follows: low-fat diet (LFD), HFD, HFD + metformin (Met, 100 mg kg-1 d-1), HFD + TFs (TFs, 200 mg kg-1 d-1), HFD + TF1 (TF1, 100 mg kg-1 d-1), HFD + TF2a (TF2a, 100 mg kg-1 d-1), and HFD + TF3 (TF3, 100 mg kg-1 d-1). All groups were studied for 9 weeks continuously. The levels of serum glucose, insulin, TC, TG, LDL and HLD in the plasma, lipid accumulation in the liver, and injury of the liver were investigated. In addition, the effects of TFs and their monomers on the SIRT6/AMPK/SREBP-1/FASN pathway were also evaluated. The results showed that oral administration of TFs, TF1, TF2a and TF3 not only dramatically suppressed weight gain, reduced blood glucose level, and ameliorated insulin resistance but also obviously lowered the levels of serum TC, TG and LDL, suppressed the activities of ALT and AST, and ameliorated hepatic damage in mice fed a HFD when compared to the HFD group. Western blot analysis showed that TFs, TF1, TF2a and TF3 treatments increased the expression of SIRT6 and suppressed the expression levels of SREBP-1 and FASN significantly in mice fed a HFD as compared to the HFD group. The phosphorylation of AMPK in mice fed a HFD was obviously elevated by TF2a and TF3 when compared to the HFD group. These results proved for the first time that TF1, TF2a and TF3 improved the glucolipid metabolism of mice fed a HFD, and activated the SIRT6/AMPK/SREBP-1/FASN signaling pathway to inhibit the synthesis and accumulation of lipids in the liver to ameliorate obesity in mice fed a HFD. These findings indicate that TFs, TF1, TF2a and TF3 as the main functional components of black tea might potentially be used as a food additive for improving glycolipid metabolism and ameliorating obesity, and TF3 may be the best choice.
Collapse
Affiliation(s)
- Xiaqiang Cai
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. .,International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Zenghui Liu
- Anhui Academy of Medical Sciences, Hefei 230061, China
| | - Xu Dong
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. .,International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Ying Wang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. .,International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Luwei Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. .,International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Mengli Li
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. .,International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| | - Yan Xu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture/Anhui Provincial Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China. .,International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Hefei, China
| |
Collapse
|
20
|
Rice peptide and collagen peptide prevented potassium oxonate-induced hyperuricemia and renal damage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Zeng J, Deng Z, Zou Y, Liu C, Fu H, Gu Y, Chang H. Theaflavin alleviates oxidative injury and atherosclerosis progress via activating microRNA-24-mediated Nrf2/HO-1 signal. Phytother Res 2021; 35:3418-3427. [PMID: 33755271 DOI: 10.1002/ptr.7064] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/06/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022]
Abstract
Theaflavin (TF) in black tea has been shown to have significant antioxidant and anti-inflammatory capacity; however, the effects and the underlying mechanism of TF on atherosclerosis (AS) remain unclear. Herein, we investigated the effects and the potential mechanism of TF on AS progression in vivo and in vitro. ApoE-/- mice were administrated with high fat diet (HFD) or HFD + TF (5 or 10 mg, i.g.) for 12 weeks. The results indicated that TF administration effectively decreases the serum lipid levels and the production of MDA in HFD-fed mice. Meanwhile, TF promotes the activities of antioxidant enzymes (SOD, CAT, and GSH-Px) and inhibits the formation of atherosclerotic plaque and the process of histological alterations in the aorta. In vitro, TF pretreatment could protect against cholesterol-induced oxidative injuries in HUVEC cells, decreasing the level of ROS and MDA, maintaining the activities of antioxidant enzymes. Further study revealed that TF upregulates Nrf2/HO-1 signaling pathway in vascular endothelial cells. Moreover, TF increases the level of microRNA-24 (miR-24), and miR-24 inhibition markedly compromises TF-induced Nrf2 activation and protective effects. In conclusion, the present study indicated that theaflavins may achieve the anti-atherosclerotic effect via activating miR-24-mediated Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Jie Zeng
- College of Food Science, Southwest University, Chongqing, China
| | - Zhihui Deng
- College of Food Science, Southwest University, Chongqing, China
| | - Yixin Zou
- College of Food Science, Southwest University, Chongqing, China
| | - Chang Liu
- College of Food Science, Southwest University, Chongqing, China
| | - Hongjuan Fu
- College of Food Science, Southwest University, Chongqing, China
| | - Yi Gu
- College of Food Science, Southwest University, Chongqing, China
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
22
|
Liu G, Chen X, Lu X, Zhao J, Li X. Sunflower head enzymatic hydrolysate relives hyperuricemia by inhibiting crucial proteins (xanthine oxidase, adenosine deaminase, uric acid transporter1) and restoring gut microbiota in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Jiang LL, Gong X, Ji MY, Wang CC, Wang JH, Li MH. Bioactive Compounds from Plant-Based Functional Foods: A Promising Choice for the Prevention and Management of Hyperuricemia. Foods 2020; 9:foods9080973. [PMID: 32717824 PMCID: PMC7466221 DOI: 10.3390/foods9080973] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Hyperuricemia is a common metabolic disease that is caused by high serum uric acid levels. It is considered to be closely associated with the development of many chronic diseases, such as obesity, hypertension, hyperlipemia, diabetes, and cardiovascular disorders. While pharmaceutical drugs have been shown to exhibit serious side effects, and bioactive compounds from plant-based functional foods have been demonstrated to be active in the treatment of hyperuricemia with only minimal side effects. Indeed, previous reports have revealed the significant impact of bioactive compounds from plant-based functional foods on hyperuricemia. This review focuses on plant-based functional foods that exhibit a hypouricemic function and discusses the different bioactive compounds and their pharmacological effects. More specifically, the bioactive compounds of plant-based functional foods are divided into six categories, namely flavonoids, phenolic acids, alkaloids, saponins, polysaccharides, and others. In addition, the mechanism by which these bioactive compounds exhibit a hypouricemic effect is summarized into three classes, namely the inhibition of uric acid production, improved renal uric acid elimination, and improved intestinal uric acid secretion. Overall, this current and comprehensive review examines the use of bioactive compounds from plant-based functional foods as natural remedies for the management of hyperuricemia.
Collapse
Affiliation(s)
- Lin-Lin Jiang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
| | - Xue Gong
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
| | - Ming-Yue Ji
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
| | - Cong-Cong Wang
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
| | - Jian-Hua Wang
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
- Correspondence: (J.-H.W.); (M.-H.L.); Tel.: +86-472-716-7795 (M.-H.L.)
| | - Min-Hui Li
- Department of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China;
- Department of Pharmacy, Baotou Medical College, Baotou 014060, China; (X.G.); (M.-Y.J.); (C.-C.W.)
- Department of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014060, China
- Correspondence: (J.-H.W.); (M.-H.L.); Tel.: +86-472-716-7795 (M.-H.L.)
| |
Collapse
|